成语

最小公倍数说课稿(最小公倍数说课稿得奖)

最小公倍数说课稿(最小公倍数说课稿得奖)


最小公倍数说课稿5篇

小学生的动手欲望较强,学生认识数的概念时更愿意自主参与,自己发现。但是,学生个人的解题能力有限,下面给大家分享最小公倍数说课稿,欢迎阅读!

最小公倍数说课稿【篇1】

一、教学内容

《义务教育教科书数学》(人教版)五年级下册第70页例3。

二、教学目标

1、学会用公倍数和最小公倍数的知识解决生活中的实际问题,体验数学与生活的密切联系。

2、能够将生活中的实际问题转化为数学问题,提高解决问题的能力。

三、教学重难点

学会用公倍数和最小公倍数的知识解决生活中的实际问题。

四、活动设计

接下来,让我们一起走进今天的数学课堂。在学习新知识前,我们先来复习上节课的内容。

1、回顾求两个数的公倍数和最小公倍数的方法。

请你找出下列每组数的最小公倍数。6和92和148和9

第一组:找6和9的最小公倍数,可以先写出9的倍数,再从中圈出6的倍数,其中从小到大第一个圈出的就是它们的最小公倍数。

第二组:因为14是2的倍数,所以14是它们的最小公倍数。

第三组:因为8和9只有公因数1,所以两个数的积72是它们的最小公倍数。

2、教学例3。

这节课,我们一起利用求公倍数和最小公倍数的方法解决生活中的实际问题。王叔叔在装修房子时遇到了这样的问题,请你认真读一读,题目中有哪些重要的数学信息呢?(出示例3)

阅读与理解:王叔叔装修墙面用的墙砖是一个长3分米,宽2分米的长方形,要用许多块这样的长方形墙砖铺成一个正方形,而且墙砖必须用整块的,王叔叔想让我们帮着找一找,拼成的正方形的边长是多少分米?其中最小是多少分米呢?可以怎么拼呢,一起试一试。

分析与解答:横着铺两块,我们先铺一行,铺成的图形显然不是正方形,再铺一行,也不是正方形,那么铺三行呢?铺成的图形是正方形吗?我们一起算一算,横着铺两块,它的长就是2个3,6分米,铺了这样的三行,竖着看就有3个2,它的长度也是6分米,不错,我们铺成了一个边长是6分米的正方形。

那么横着铺3块可以吗?再一起试一试,横着铺3块,它的长是9分米,铺两行宽是4分米,铺三行是6分米,铺四行是8分米,如果铺五行就是10分米,因为墙砖必须是整块的,所以不能铺成9分米的长度,也就不能铺成一个正方形。

我们还可以这么拼,横着铺4块,铺一行、铺两行,显然都不是正方形,大家想一想,铺几行才能铺成一个正方形呢?有同学说可以铺6行,大家一起算一算,铺6行是不是正方形?横着铺4块,长就是4个3,12分米,铺这样的6行,就有6个2,也是12分米,真好,我们又铺成了一个边长是12分米的正方形。

通过铺一铺,算一算,我们铺成了一个边长是6分米的正方形,我们也铺成了一个边长是12分米的正方形,相信同学们还能铺成其他很多不同的正方形,那么为什么横着铺2块和4块,都能铺成正方形,而横着铺3块却不能铺成正方形呢?请你仔细观察,试着找一找,铺成的正方形的边长与长方形墙砖之间有什么联系呢?

横着铺两块的时候,长是6分米,有2个3,我们也可以说6是3的倍数,像这样铺3行,就是6分米,有3个2,6也是2的倍数,铺出的正方形边长6分米既是3的倍数,又是2的倍数,也就是它们的公倍数。同样,12分米既是2的倍数,也是3的倍数,也就是2和3的公倍数,所以它们能铺成正方形。那么,是不是边长是2和3的公倍数就能铺成正方形,如果不是它们的公倍数就不能铺成正方形了呢?

我们一起看看,横着铺3块墙砖时的情况。横着铺3块,长9分米,是3的倍数,但不是2的倍数,所以另一条边不可能铺出9分米。因为9不是2和3的公倍数,所以不能铺成正方形。

看来只要铺成的正方形的边长是2和3的公倍数,也就是铺成的正方形的边长是长方形墙砖长与宽的公倍数的时候,就一定能铺成正方形。

2和3的公倍数有6、12、18……所以铺成的正方形的边长可以是6分米,12分米,18分米,还有很多不同边长的正方形,其中最小公倍数6分米,就是铺成的正方形的最小边长。

回顾与反思:回忆整个解决问题的过程,我们发现解决这类问题的关键是把用整块的长方形墙砖铺成正方形的问题转化成求公倍数和最小公倍数的数学问题,同学们,你们掌握了吗?

3、实际应用(练习十七5—12题、生活中的数学)

【P71—6】请你认真读一读,题目中有哪些重要的数学信息呢?李阿姨要给花浇水,月季每4天浇一次,君子兰每6天浇一次。李阿姨5月1日给月季和君子兰同时浇了水,她想让大家帮忙算一算,下一次再给这两种花同时浇水应是5月几日?同学们一定想到了,4和6的公倍数是同时浇花的间隔天数,因为是求“下一次同时浇花”,所以要取最小的间隔天数,也就是4和6的最小公倍数。4和6的最小公倍数是12,所以下一次同时给两种花浇水应是5月13日。

【P71—7】请大家先读题,找出重要的数学信息。好,我们一起来看,这些学生可以分成6人一组,也可以分成9人一组,都正好分完。说明这些学生的总人数是6和9的公倍数。又已知总人数在40以内,所以是求40以内6和9的公倍数。40以内6和9的公倍数有18、36,所以这些学生的总人数可能是18人,可能是36人。

【P72—10】接着请大家把教材翻到72页看第10题,自己先尝试独立完成,看看大家能不能将这个生活中的实际问题转化成数学问题。相信大家一定做出来了。每隔几分钟发车即每过几分钟发车,3路车每过6分钟发一次车,5路车每过8分钟发一次车,在它们同时发车后,第二次同时发车过的分钟数就是6和8的最小公倍数。因为6和8的最小公倍数是24,所以两路公共汽车过24分钟第二次同时发车。

【P72—11】请大家认真读题,解答出第1个数学问题后,再尝试提出其他数学问题并解答。我们一起来看,爸爸跑一圈用3分钟,妈妈跑一圈用4分钟,女孩跑一圈用6分钟。如果爸爸妈妈同时起跑,至少多少分钟后两人在起点再次相遇,这里的“至少”就是取最小的间隔时间,也就是求3和4的最小公倍数,3和4的最小公倍数是12,所以爸爸妈妈至少12分钟后在起点再次相遇。此时,爸爸跑了12÷3=4圈,妈妈跑了12÷4=3圈。根据题意,我们还可以提出爸爸和女孩,妈妈和女孩以及三人同时起跑,至少多少分钟再在起点相遇,此时分别跑了多少圈。请你检查一下,自己做对了吗?

【P72—12】第12题是一道带__号的选做题,让我们一起挑战一下吧!36可能是哪两个数的最小公倍数?请你先试着找一找,看看你能找出几组。

我们知道当两数成倍数关系时,较大的数就是它们的最小公倍数。所以任意一个36的因数,除36以外,与36组合,两个数的最小公倍数都是36。我们先写出36的所有因数,即1、2、3、4、6、9、12、18、36。去掉36,其他因数与36组合,可以得到8组。此外,两个数不成倍数关系的还有4组,分别是4和9,4和18,9和12,12和18。

【生活中的数学】我们一起看“生活中的数学”,用洗衣液手洗衣物时,一盆5升30摄氏度左右的温水,可以加入《最小公倍数例3》教学设计瓶盖20毫升的洗衣液调匀。相机可以用《最小公倍数例3》教学设计秒的快门速度曝光,美国科学家研制出了粗细只有头发丝的《最小公倍数例3》教学设计的太阳能电池。数学家华罗庚曾经说过:宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,日用之繁,无处不用数学。这是对数学与生活的精彩描述,课后,同学们可以继续寻找生活中与分数有关的例子,还可以寻找生活中公倍数、最小公倍数的实际应用。

4、课后作业:71页第5题、第8题,72页第9题。

这节课就上到这里,同学们,再见!

最小公倍数说课稿【篇2】

各位评委老师:

大家好!今天我执教的五年级下册《最小公倍数》一课,下面开始上课。

同学们,你们喜欢做游戏吗?今天我们一起做一个非常有趣的找位置游戏,好不好?请听游戏规则:老师会请7位同学参与,每人发一个号码代表自己,然后听老师的口令快速找到自己的位置,找对位置的同学继续参与游戏,找错位置的同学则被淘汰,另换一名同学参加。听明白了吗?好,这个游戏考验大家的反应能力,谁愿意参加?我会把这7张卡片分给7位同学。

现在开始游戏。其他学生来做裁判。第一次找位置,请奇数号码的同学站这边,偶数号码的同学站这边。站对了吗?请归位。第二次找位置开始,请是2的倍数的同学站这边,是3的倍数的同学站这边。这时候号码是6的同学会站到一边或不知道往哪边站。我会问:他站的位置对吗?他应该往哪边站?其他同学会说:他即应该往左边站,也应该往右边站。为什么呀?因为 6既是3的倍数,又是2的倍数。

6既是3的倍数,又是2的倍数,也就是说6是3和2公有的倍数。那你还知道哪个数是3和2公有的倍数?

学生会答出12、18、24,还有吗?能数完吗?那后面用“…”号表示。这些数都是3和2公有的倍数,就叫做3和2的公倍数。(板书:公倍数)谁来说说:什么叫做3和2的公倍数?说的不错,还有谁?说的很完整,还有吗?同桌也互相说说。

刚才我们知道了什么是公倍数,它在生活中帮助我们解决什么问题呢?我们一起来看。(出示生活情境,课件显示。)张老师家正在装修新房,我想把电视后面的这块正方形墙壁铺上漂亮的墙砖。这块正方形墙壁的边长是12分米,我想整块整块的铺满,不能切割墙砖。到了商店,店家说:我们有两种墙砖,1号墙砖长3分米、宽2分米,2号墙砖长5分米、宽3分米。你选哪一种合适呢?

同学们,愿意帮助老师解决这个问题吗?

为了方便大家操作,请每个小组打开1号学具袋,里面有模拟的长方形墙砖和正方形墙壁平面图。大家可以拼一拼,摆一摆,看能得到什么结果?下面分小组活动,进行动手操作。

谁来展示一下:你们小组选择的是长几分米,宽几分米的墙砖,能正好铺满吗?

1号小组:我们小组选择的是长3分米、宽2分米的墙砖,整块整块的铺,正好能铺满。

2号小组:我们小组选择的是长5分米、宽3分米的墙砖,整块整块的铺,不能正好铺满。

那选哪一种砖合适呢?为什么选1号砖?因为1号砖整块整块的铺,正好能铺满。为什么不选2号砖?因为2号砖整块整块的铺,不能正好铺满。

1号砖为什么能正好铺满?这位同学:因为墙的边长12是3的倍数,也是2的倍数,也就是3和2的公倍数,所以,能正好铺满。是这样吗?还有谁来说说?抽3至4人回答。

为什么2号砖不能正好铺满?因为12不是5和3的公倍数。

分析的很正确。我们一起看一下,1号砖铺上去,漂亮吗?(课件出示)

课堂小结:“看来所铺正方形墙壁的边长必须是长方形墙砖长3分米,宽2分米的公倍数。” 大家通过动手操作,帮助老师解决了铺墙砖的问题,谢谢你们!在这个过程中,我们还获得了很有价值的发现。你们真了不起!(课件出示情境)如果用这种长3分米宽2分米的长方形墙砖,整块整块的铺,还可以铺成边长是多少分米的正方形?”

大家先猜一猜?6分米、15分米、18分米…

同学们,合理的猜想是成功的一半,大家的猜想是否正确呢?请大家从2号学具袋中拿出表格,可以再次利用学具拼一拼、摆一摆,进行验证,把得到的结果填写到表格中。填写完毕后我会有代表性的展示表格。

你发现了什么?我们发现这些正方形的边长就是所铺长方形墙砖长和宽的公倍数。 “你能用今天所学的公倍数知识解决问题,真了不起!”

其他组的发现一样吗?谁再来说说?3和2的公倍数都是6的倍数(贴板书);3和2最小的公倍数是6(贴板书);3和2公倍数是有很多个…,大家真善于思考,把这些发现给你的同桌说一说。

刚才我们发现了6是3和2最小的公倍数,叫做3和2的最小公倍数(贴板书)。(板书:最小)

谁来说说6是3和2的什么数?说的不错,还有谁?

我们刚才找出了3和2的公倍数和最小公倍数,在数学上我们还可以用集合圈来表示。(课件出示两个空白的集合圈)。

3的倍数有?2的倍数有?学生齐说,课件出示答案。3和2的公倍数有?

如果这两个集合圈这样放在一起,该怎样填呢?(课件出示空白的交叉的集合圈)

同桌互相交流一下,各部分应该填什么?怎样填?

谁来说说?这位同学:中间的部分填3和2的公倍数,左边的部分只是3的倍数,右边的部分只是2的倍数。

明白了吗?大家从2号学具袋中拿出作业纸独立完成。

完成后随着学生汇报出示答案。(课件出示答案)

那给你两个数你会求它们的最小公倍数吗?相信你一定行。(课件出示:怎样求6和8的最小公倍数。)

大家先想一想,然后拿出作业纸,把过程写出来。谁来给大家展示一下你的方法?可能会出现这几种方法,分别进行展示。这几种方法都求出了6和8的最小公倍数是24。谁用的是第一种方法?你们分别写出了6和8的倍数,然后圈出了6和8的公倍数,第一个公倍数就是6和8的最小公倍数。这种方法是把6和8的倍数都列了出来,就是列举法。

谁用的是第二种?谁用的是第三种?那这两种方法有什么联系和区别?这两种方法都是先列出了其中一个数的倍数,再从中找出另一个数的倍数,也就是两个数的公倍数。区别是第二种是列出了较小数的倍数,第三种是列出了较大数的倍数。那哪一种找的更快?谁用的是第四种?

我们用这么多方法求出了6和8的最小公倍数,从中选出你喜欢的方法给同桌说一说。

会求两个数的最小公倍数了吗?好,我们试一试,看你能做对吗?(课件出示练习题前2题)学生独立完成,完成后随着学生回答出示答案。大家完成的非常好,我们再来看几道。(接着出示后4题)随着学生回答出示答案。完毕后问:你发现了什么?

这位同学:当两个数成倍数关系时,这两个数的最小公倍数就是较大的数。当两个数成互质关系时,它们的最小公倍数是它俩的乘积。说的太好了!同桌互相说说。

大家通过自己的努力,认识了公倍数和最小公倍数 ,掌握了求两个数的最小公倍数的方法。这些内容在我们的数学书88—90页,请大家打开书,认真看一遍。

还有问题吗?相信大家一定有很大的收获,让我们带着收获进行下面的练习。相信你一定没有问题!

课件出示练习题一,下面的说法对吗?说一说你的理由。第一道,你来说:错,比如说4和8,8就是它们的最小公倍数,但并不比8大。同意吗?第二道,这位同学:我认为这道题是对的。同意吗?那这两个数的积一定是这两个数的最小公倍数吗?不一定。

课件出示练习题二,请大家认真读题,独立完成。都谁完成了?这位同学:几月几日再次给这两种花同时浇水,其实是求4和6的最小公倍数,应该是至少12天后再次给这两种花同时浇水,也就是4月12日。同意吗?

大家对今天所学的知识掌握的非常扎实,其实在天文学中也有最小公倍数的知识,请看:

朗诵:这颗美丽的慧星是著名的哈雷彗星,哈雷彗星是最著名的短周期彗星,每隔75或76年才能从地球上看见一次,它上一次回归是在20__年,而下一次回归将在20__年。它回归的时间就和它的公转周期与地球公转周期的最小公倍数有关。

“奇妙吧!如果大家还想继续了解,回去可以上网查找一下相关的资料。让我们带着收获,下课!”

板书:

最小公倍数

6、12、18…是2和3公有的倍数,叫它们的公倍数。6是2和3的最小公倍数。

最小公倍数说课稿【篇3】

各位评委老师:

大家好!

今天我执教的五年级下册《最小公倍数》一课,下面开始上课。

同学们,你们喜欢做游戏吗?今天我们一起做一个非常有趣的找位置游戏,好不好?请听游戏规则:老师会请7位同学参与,每人发一个号码代表自己,然后听老师的口令快速找到自己的位置,找对位置的同学继续参与游戏,找错位置的同学则被淘汰,另换一名同学参加。听明白了吗?好,这个游戏考验大家的反应能力,谁愿意参加?我会把这7张卡片分给7位同学。

现在开始游戏。其他学生来做裁判。第一次找位置,请奇数号码的同学站这边,偶数号码的同学站这边。站对了吗?请归位。第二次找位置开始,请是2的倍数的同学站这边,是3的倍数的同学站这边。这时候号码是6的同学会站到一边或不知道往哪边站。我会问:他站的位置对吗?他应该往哪边站?其他同学会说:他即应该往左边站,也应该往右边站。为什么呀?因为 6既是3的倍数,又是2的倍数。

6既是3的倍数,又是2的倍数,也就是说6是3和2公有的倍数。那你还知道哪个数是3和2公有的倍数?

学生会答出12、18、24,还有吗?能数完吗?那后面用“…”号表示。这些数都是3和2公有的倍数,就叫做3和2的公倍数。(板书:公倍数)谁来说说:什么叫做3和2的公倍数?说的不错,还有谁?说的很完整,还有吗?同桌也互相说说。

刚才我们知道了什么是公倍数,它在生活中帮助我们解决什么问题呢?我们一起来看。(出示生活情境,课件显示。)张老师家正在装修新房,我想把电视后面的这块正方形墙壁铺上漂亮的墙砖。这块正方形墙壁的边长是12分米,我想整块整块的铺满,不能切割墙砖。到了商店,店家说:我们有两种墙砖,1号墙砖长3分米、宽2分米,2号墙砖长5分米、宽3分米。你选哪一种合适呢?

同学们,愿意帮助老师解决这个问题吗?

为了方便大家操作,请每个小组打开1号学具袋,里面有模拟的长方形墙砖和正方形墙壁平面图。大家可以拼一拼,摆一摆,看能得到什么结果?下面分小组活动,进行动手操作。

谁来展示一下:你们小组选择的是长几分米,宽几分米的墙砖,能正好铺满吗?

1号小组:我们小组选择的是长3分米、宽2分米的墙砖,整块整块的铺,正好能铺满。

2号小组:我们小组选择的是长5分米、宽3分米的墙砖,整块整块的铺,不能正好铺满。

那选哪一种砖合适呢?为什么选1号砖?因为1号砖整块整块的铺,正好能铺满。为什么不选2号砖?因为2号砖整块整块的铺,不能正好铺满。

1号砖为什么能正好铺满?这位同学:因为墙的边长12是3的倍数,也是2的倍数,也就是3和2的公倍数,所以,能正好铺满。是这样吗?还有谁来说说?抽3至4人回答。

为什么2号砖不能正好铺满?因为12不是5和3的公倍数。

分析的很正确。我们一起看一下,1号砖铺上去,漂亮吗?(课件出示)

课堂小结:“看来所铺正方形墙壁的边长必须是长方形墙砖长3分米,宽2分米的公倍数。” 大家通过动手操作,帮助老师解决了铺墙砖的问题,谢谢你们!在这个过程中,我们还获得了很有价值的发现。你们真了不起!(课件出示情境)如果用这种长3分米宽2分米的长方形墙砖,整块整块的铺,还可以铺成边长是多少分米的正方形?”

大家先猜一猜?6分米、15分米、18分米…

同学们,合理的猜想是成功的一半,大家的猜想是否正确呢?请大家从2号学具袋中拿出表格,可以再次利用学具拼一拼、摆一摆,进行验证,把得到的结果填写到表格中。填写完毕后我会有代表性的展示表格。

你发现了什么?我们发现这些正方形的边长就是所铺长方形墙砖长和宽的公倍数。 “你能用今天所学的公倍数知识解决问题,真了不起!”

其他组的发现一样吗?谁再来说说?3和2的公倍数都是6的倍数(贴板书);3和2最小的公倍数是6(贴板书);3和2公倍数是有很多个…,大家真善于思考,把这些发现给你的同桌说一说。

刚才我们发现了6是3和2最小的公倍数,叫做3和2的最小公倍数(贴板书)。(板书:最小)

谁来说说6是3和2的什么数?说的不错,还有谁?

我们刚才找出了3和2的公倍数和最小公倍数,在数学上我们还可以用集合圈来表示。(课件出示两个空白的集合圈)。

3的倍数有?2的倍数有?学生齐说,课件出示答案。3和2的公倍数有?

如果这两个集合圈这样放在一起,该怎样填呢?(课件出示空白的交叉的集合圈)

同桌互相交流一下,各部分应该填什么?怎样填?

谁来说说?这位同学:中间的部分填3和2的公倍数,左边的部分只是3的倍数,右边的部分只是2的倍数。

明白了吗?大家从2号学具袋中拿出作业纸独立完成。

完成后随着学生汇报出示答案。(课件出示答案)

那给你两个数你会求它们的最小公倍数吗?相信你一定行。(课件出示:怎样求6和8的最小公倍数。)

大家先想一想,然后拿出作业纸,把过程写出来。谁来给大家展示一下你的方法?可能会出现这几种方法,分别进行展示。这几种方法都求出了6和8的最小公倍数是24。谁用的是第一种方法?你们分别写出了6和8的倍数,然后圈出了6和8的公倍数,第一个公倍数就是6和8的最小公倍数。这种方法是把6和8的倍数都列了出来,就是列举法。

谁用的是第二种?谁用的是第三种?那这两种方法有什么联系和区别?这两种方法都是先列出了其中一个数的倍数,再从中找出另一个数的倍数,也就是两个数的公倍数。区别是第二种是列出了较小数的倍数,第三种是列出了较大数的倍数。那哪一种找的更快?谁用的是第四种?

我们用这么多方法求出了6和8的最小公倍数,从中选出你喜欢的方法给同桌说一说。

会求两个数的最小公倍数了吗?好,我们试一试,看你能做对吗?(课件出示练习题前2题)学生独立完成,完成后随着学生回答出示答案。大家完成的非常好,我们再来看几道。(接着出示后4题)随着学生回答出示答案。完毕后问:你发现了什么?

这位同学:当两个数成倍数关系时,这两个数的最小公倍数就是较大的数。当两个数成互质关系时,它们的最小公倍数是它俩的乘积。说的太好了!同桌互相说说。

大家通过自己的努力,认识了公倍数和最小公倍数 ,掌握了求两个数的最小公倍数的方法。这些内容在我们的数学书88—90页,请大家打开书,认真看一遍。

还有问题吗?相信大家一定有很大的收获,让我们带着收获进行下面的练习。相信你一定没有问题!

课件出示练习题一,下面的说法对吗?说一说你的理由。第一道,你来说:错,比如说4和8,8就是它们的最小公倍数,但并不比8大。同意吗?第二道,这位同学:我认为这道题是对的。同意吗?那这两个数的积一定是这两个数的最小公倍数吗?不一定。

课件出示练习题二,请大家认真读题,独立完成。都谁完成了?这位同学:几月几日再次给这两种花同时浇水,其实是求4和6的最小公倍数,应该是至少12天后再次给这两种花同时浇水,也就是4月12日。同意吗?

大家对今天所学的知识掌握的非常扎实,其实在天文学中也有最小公倍数的知识,请看:

朗诵:这颗美丽的慧星是著名的哈雷彗星,哈雷彗星是最著名的短周期彗星,每隔75或76年才能从地球上看见一次,它上一次回归是在20__年,而下一次回归将在20__年。它回归的时间就和它的公转周期与地球公转周期的最小公倍数有关。

“奇妙吧!如果大家还想继续了解,回去可以上网查找一下相关的资料。让我们带着收获,下课!”

最小公倍数说课稿【篇4】

(一)以趣激疑、引出课题

通过体育课上报数的形式,感知有些数既是2的倍数,又是3的倍数,初步感知公倍数的存在,引出课题。

(二)创设情境、探索交流

通过四个步骤达到探索交流的目的。

1、体验公倍数和最小公倍数的概念。突出教学重点,突破教学难点。

我首先对教材的情境图进行了加工,从学生喜爱佩服的阿凡提帮工人讨工资的故事引入,目的是通过富有生活问题的情境,激发学生学习的兴趣。通过自己的思考和生活常识,采用日历上圈一圈,本子上写一写、画一画等方法找到阿凡提取钱的日子,突出教学重点。通过探索,汇报,发现巴依老爷的休息日实际上就是4的倍数,账房先生的休息日就是 6的倍数,他们共同的休息日就是4和6的公倍数。因为一个数的倍数的个数是无限的,所以要在集合圈里用省略号表示出来。除此以外,还可以用线段图的方式表示。形象直观的演示,一方面突出了教学重点,另一方面也突破了教学难点。

2、合作交流解决问题,加深对公倍数和最小公倍数的理解。

然后,我又把教材中的情境教学作为动手实践的内容出示,让学生在动手实践、合作交流,解决实际问题中,进一步掌握最小公倍数的方法,同时体会公倍数和最小公倍数的关系。

3、归纳求最小公倍数的方法。

学生亲身经历了探索的过程,经历独立思考,动手实践,合作交流的过程,感知了公倍数和最小公倍数的意义,归纳总结求最小公倍数的方法。既培养了学生的抽象概括能力,多角度思维能力和解决实际问题的能力,又培养了学生学习的合作意识和交流意识。

4、看书质疑。让学生学会读书,学会质疑。

(三)解决问题、深化理解

首先出示书P90页的做一做,独立完成并总结规律。使学生知道倍数关系和互质数关系的最小公倍数的特点,从而明白实际情况是解决问题的最好依据。

然后是打电话游戏。

这个环节的设计力图体现“数学知识的教学要与学生现实密切联系”的理念。引导学生在生活情境中进行“再创造”,既有利于学生凭借生活经验主动探索,实现生活经验数学化,又有利于让学生感受到数学就在身边,对数学产生浓厚的兴趣和亲切感。

(四)、课堂小结、总结归纳

请同学们说一说,今天都学到了什么?谈谈这堂课的感受。

(五)、课后作业、拓展延伸

运用这单元学习的知识,也给你的朋友编一个谜语,让他们猜猜你们家的电话号码。

这个环节通过新知的运用,让学生在兴趣盎然中放松学生的心理,巩固基础知识,发展思维,充分体现“玩中学,做中学,学中悟”的理念,让学生学得轻松愉快。真正实现人人参与、人人学会。

最小公倍数说课稿【篇5】

《最小公倍数》是浙教版小学数学第十册的教学内容,是最小公倍数的第一课时,是引导学生在自主参与、发现、归纳的基础上认识并建立最小公倍数的概念的过程。新课标要求教材选择具有现实性和趣味性的素材,由浅入深地促使学生在探索与交流中建立公倍数与最小公倍数的概念。在此之前,学生已经了解了整除、倍数、约数以及公约数和最大公约数。例1通过写出几个数的倍数,找出公有的倍数,再从公有的倍数中找出最小的一个,从而引出公倍数与最小公倍数的概念。接着用集合图形象地表示出6的倍数、9的倍数与它们公倍数之间的关系,这一内容的学习也为今后的通分、约分学习打下了基础,具有科学的、严密的逻辑性。

本节课的教学目标是:

1、建立公倍数与最小公倍数的概念。使学生理解公倍数和最小公倍数的含义。

2、学会用列举法找两个数的公倍数和最小公倍数。

3、初步培养学生的数学应用意识与解决简单实际问题的能力。

4、培养学生主动探究的意识和能力,培养学生的比较推理与抽象概括能力。

本堂课的教学重点在于公倍数与最小公倍数的概念建立。教学难点在于运用“公倍数与最小公倍数”的知识解决简单的生活实际问题。

成语首拼