成语

2023高一数学教案(2023高一数学期末试卷)

2023高一数学教案(2023高一数学期末试卷)


2023高一数学教案6篇

我们衷心希望我们能够共同度过这段愉快的学习时光,相互学习、相互进步。下面是小编为大家整理的高一数学教案,如果大家喜欢可以分享给身边的朋友。

2023高一数学教案(篇1)

一、教学目标

(1)了解含有“或”、“且”、“非”复合命题的概念及其构成形式;

(2)理解逻辑联结词“或”“且”“非”的含义;

(3)能用逻辑联结词和简单命题构成不同形式的复合命题;

(4)能识别复合命题中所用的逻辑联结词及其联结的简单命题;

(5)会用真值表判断相应的复合命题的真假;

(6)在知识学习的基础上,培养学生简单推理的技能.

二、教学重点难点:

重点是判断复合命题真假的方法;难点是对“或”的含义的理解.

三、教学过程

1.新课导入

在当今社会中,人们从事任何工作、学习,都离不开逻辑.具有一定逻辑知识是构成一个公民的文化素质的重要方面.数学的特点是逻辑性强,特别是进入高中以后,所学的教学比初中更强调逻辑性.如果不学习一定的逻辑知识,将会在我们学习的过程中不知不觉地经常犯逻辑性的错误.其实,同学们在初中已经开始接触一些简易逻辑的知识.

初一平面几何中曾学过命题,请同学们举一个命题的例子.(板书:命题.)

(从初中接触过的“命题”入手,提出问题,进而学习逻辑的有关知识.)

学生举例:平行四边形的对角线互相平. ……(1)

两直线平行,同位角相等.…………(2)

教师提问:“……相等的角是对顶角”是不是命题?……(3)

(同学议论结果,答案是肯定的.)

教师提问:什么是命题?

(学生进行回忆、思考.)

概念总结:对一件事情作出了判断的语句叫做命题.

(教师肯定了同学的回答,并作板书.)

由于判断有正确与错误之分,所以命题有真假之分,命题(1)、(2)是真命题,而(3)是假命题.

(教师利用投影片,和学生讨论以下问题.)

例1 判断以下各语句是不是命题,若是,判断其真假:

命题一定要对一件事情作出判断,(3)、(4)没有对一件事情作出判断,所以它们不是命题.

初中所学的命题概念涉及逻辑知识,我们今天开始要在初中学习的基础上,介绍简易逻辑的知识.

2.讲授新课

大家看课本(人教版,试验修订本,第一册(上))从第25页至26页例1前,并归纳一下这段内容主要讲了哪些问题?

(片刻后请同学举手回答,一共讲了四个问题.师生一道归纳如下.)

(1)什么叫做命题?

可以判断真假的语句叫做命题.

判断一个语句是不是命题,关键看这语句有没有对一件事情作出了判断,疑问句、祈使句都不是命题.有些语句中含有变量,如 x2-5x+6=0

中含有变量 ,在不给定变量的值之前,我们无法确定这语句的真假(这种含有变量的语句叫做“开语句”).

(2)介绍逻辑联结词“或”、“且”、“非”.

“或”、“且”、“非”这些词叫做逻辑联结词.逻辑联结词除这三种形式外,还有“若…则…”和“当且仅当”两种形式.

命题可分为简单命题和复合命题.

不含逻辑联结词的命题叫做简单命题.简单命题是不含其他命题作为其组成部分(在结构上不能再分解成其他命题)的命题.

由简单命题和逻辑联结词构成的命题叫做复合命题,如“6是自然数且是偶数”就是由简单命题“6是自然数”和“6是偶数”由逻辑联结词“且”构成的复合命题.

(4)命题的表示:用p ,q ,r ,s ,……来表示.

(教师根据学生回答的情况作补充和强调,特别是对复合命题的概念作出分析和展开.)

我们接触的复合命题一般有“p 或q ”“p且q ”、“非p ”、“若p 则q ”等形式.

给出一个含有“或”、“且”、“非”的复合命题,应能说出构成它的简单命题和弄清它所用的逻辑联结词;应能根据所给出的两个简单命题,写出含有逻辑联结词“或”、“且”、“非”的复合命题.

对于给出“若p 则q ”形式的复合命题,应能找到条件p 和结论q .

在判断一个命题是简单命题还是复合命题时,不能只从字面上来看有没有“或”、“且”、“非”.例如命题“等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合”,此命题字面上无“且”;命题“5的倍数的末位数字不是0就是5”的字面上无“或”,但它们都是复合命题.

3.巩固新课

例2 判断下列命题,哪些是简单命题,哪些是复合命题.如果是复合命题,指出它的构成形式以及构成它的简单命题.

(1)5 ;

(2)0.5非整数;

(3)内错角相等,两直线平行;

(4)菱形的对角线互相垂直且平分;

(5)平行线不相交;

(6)若ab=0 ,则a=0 .

(让学生有充分的时间进行辨析.教材中对“若…则…”不作要求,教师可以根据学生的情况作些补充.)

2023高一数学教案(篇2)

一、课标要求:

理解充分条件、必要条件与充要条件的意义,会判断充分条件、必要条件与充要条件.

二、知识与方法回顾:

1、充分条件、必要条件与充要条件的概念:

2、从逻辑推理关系上看充分不必要条件、必要不充分条件与充要条件:

3、从集合与集合之间关系上看充分条件、必要条件与充要条件:

4、特殊值法:判断充分条件与必要条件时,往往用特殊值法来否定结论

5、化归思想:

表示p等价于q,等价命题可以进行相互转化,当我们要证明p成立时,就可以转化为证明q成立;

这里要注意原命题 逆否命题、逆命题 否命题只是等价形式之一,对于条件或结论是不等式关系(否定式)的命题一般应用化归思想.

6、数形结合思想:

利用韦恩图(即集合的包含关系)来判断充分不必要条件,必要不充分条件,充要条件.

三、基础训练:

1、 设命题若p则q为假,而若q则p为真,则p是q的 ( )

A.充分不必要条件 B.必要不充分条件

C.充要条件 D.既不充分也不必要条件

2、 设集合M,N为是全集U的两个子集,则 是 的 ( )

A.充分不必要条件 B.必要不充分条件

C.充要条件 D.既不充分也不必要条件

3、 若 是实数,则 是 的 ( )

A.充分不必要条件 B.必要不充分条件

C.充要条件 D.既不充分也不必要条件

四、例题讲解

例1 已知实系数一元二次方程 ,下列结论中正确的是 ( )

(1) 是这个方程有实根的充分不必要条件

(2) 是这个方程有实根的必要不充分条件

(3) 是这个方程有实根的充要条件

(4) 是这个方程有实根的充分不必要条件

A.(1)(3) B.(3)(4) C.(1)(3)(4) D.(2)(3)(4)

例2 (1)已知h 0,a,bR,设命题甲: ,命题乙: 且 ,问甲是乙的 ( )

(2)已知p:两条直线的斜率互为负倒数,q:两条直线互相垂直,则p是q的 ( )

A.充分不必要条件 B.必要不充分条件

C.充要条件 D.既不充分也不必要条件

变式:a = 0是直线 与 平行的 条件;

例3 如果命题p、q都是命题r的必要条件,命题s是命题r的充分条件,命题q是命题s

的充分条件,那么命题p是命题q的 条件;命题s是命题q的 条件;命题r是命题q的 条件.

例4 设命题p:|4x-3| 1,命题q:x2-(2a+1)x+a(a+1) 0,若﹁p是﹁q的必要不充分条件,求实数a的取值范围;

例5 设 是方程 的两个实根,试分析 是两实根 均大于1的什么条件?并给予证明.

五、课堂练习

1、设命题p: ,命题q: ,则p是q的 ( )

A.充分不必要条件 B.必要不充分条件

C.充要条件 D.既不充分也不必要条件

2、给出以下四个命题:①若p则q②若﹁r则﹁q③ 若r则﹁s

④若﹁s则q若它们都是真命题,则﹁p是s的 条件;

3、是否存在实数p,使 是 的充分条件?若存在,求出p的取值范围;若不存在说明理由.

六、课堂小结:

七、教学后记:

高三 班 学号 姓名 日期: 月 日

1、 A B是AB=B的 ( )

A.充分不必要条件 B.必要不充分条件

C.充要条件 D.既不充分也不必要条件

2、 是 的 ( )

A.充分不必要条件 B.必要不充分条件

C.充要条件 D.既不充分也不必要条件

3、 2x2-5x-30的一个必要不充分条件是 ( )

A.-

4、2且b是a+b4且ab的 ( )

A.充分不必要条件 B.必要不充分条件

C.充要条件 D.既不充分也不必要条件

5、设a1、b1、c1、a2、b2、c2均为非零实数,不等式a1x2+b1x+c10和a2x2+b2x+c20的解集分别为集合M和N,那么 是 M=N 的 ( )

A.充分不必要条件 B.必要不充分条件

C.充要条件 D.既不充分又不必要条件

6、若命题A: ,命题B: ,则命题A是B的 条件;

7、设条件p:|x|=x,条件q:x2-x,则p是q的 条件;

8、方程mx2+2x+1=0至少有一个负根的充要条件是 ;

9、关于x的方程x2+mx+n = 0有两个小于1的正根的一个充要条件是 ;

10、已知 ,求证: 的充要条件是 ;

11、已知p:-210,q:1-m1+m,若﹁p是﹁q的必要不充分条件,求实数m的取值范围。

12、已知关于x的方程(1-a)x2+(a+2)x-4=0,aR,求:

(1)方程有两个正根的充要条件;

(2)方程至少有一正根的充要条件.

2023高一数学教案(篇3)

第一节 集合的含义与表示

学时:1学时

[学习引导]

一、自主学习

1.阅读课本 .

2.回答问题:

⑴本节内容有哪些概念和知识点?

⑵尝试说出相关概念的含义?

3完成 练习

4小结

二、方法指导

1、要结合例子理解集合的概念,能说出常用的数集的名称和符号。

2、理解集合元素的特性,并会判断元素与集合的关系

3、掌握集合的表示方法,并会正确运用它们表示一些简单集合。

4、在学习中要特别注意理解空集的意义和记法

[思考引导]

一、提问题

1.集合中的元素有什么特点?

2、集合的常用表示法有哪些?

3、集合如何分类?

4.元素与集合具有什么关系?如何用数学语言表述?

5集合 和 是否相同?

二、变题目

1.下列各组对象不能构成集合的是( )

A.北京大学2008级新生

B.26个英文字母

C.著名的艺术家

D.2008年北京奥运会中所设定的比赛项目

2.下列语句:①0与 表示同一个集合;

②由1,2,3组成的集合可表示为 或 ;

③方程 的解集可表示为 ;

④集合 可以用列举法表示。

其中正确的是( )

A.①和④ B.②和③

C.② D.以上语句都不对

[总结引导]

1.集合中元素的三特性:

2.集合、元素、及其相互关系的数学符号语言的表示和理解:

3.空集的含义:

[拓展引导]

1.课外作业: 习题11第 题;

2.若集合 ,求实数 的值;

3.若集合 只有一个元素,则实数 的值为 ;若 为空集,则 的取值范围是 .

撰稿:程晓杰 审稿:宋庆

2023高一数学教案(篇4)

一、教学目标

1、知识与技能

(1)通过实物操作,增强学生的直观感知。

(2)能根据几何结构特征对空间物体进行分类。

(3)会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。

(4)会表示有关于几何体以及柱、锥、台的分类。

2、过程与方法

(1)让学生通过直观感受空间物体,从实物中概括出柱、锥、台、球的几何结构特征。

(2)让学生观察、讨论、归纳、概括所学的知识。

3、情感态度与价值观

(1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力。

(2)培养学生的空间想象能力和抽象括能力。

二、教学重点、难点

重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。 难点:柱、锥、台、球的结构特征的概括。

三、教学用具

(1)学法:观察、思考、交流、讨论、概括。

(2)实物模型、投影仪 四、教学思路

(一)创设情景,揭示课题

1、教师提出问题:在我们生活周围中有不少有特色的建筑物,你能举出一些例子吗?这些建筑的几何结构特征如何?引导学生回忆,举例和相互交流。教师对学生的活动及时给予评价。

2、所举的建筑物基本上都是由这些几何体组合而成的,(展示具有柱、锥、台、球结构特征的空间物体),你能通过观察。根据某种标准对这些空间物体进行分类吗?这是我们所要学习的内容。

(二)、研探新知

1、引导学生观察物体、思考、交流、讨论,对物体进行分类,分辩棱柱、圆柱、棱锥。

2、观察棱柱的几何物件以及投影出棱柱的图片,它们各自的特点是什么?它们的共同特点是什么?

3、组织学生分组讨论,每小组选出一名同学发表本组讨论结果。在此基础上得出棱柱的主要结构特征。

(1)有两个面互相平行;

(2)其余各面都是平行四边形;

(3)每相邻两上四边形的公共边互相平行。概括出棱柱的概念。

4、教师与学生结合图形共同得出棱柱相关概念以及棱柱的表示。

5、提出问题:各种这样的棱柱,主要有什么不同?可不可以根据不同对棱柱分类?

请列举身边具有已学过的几何结构特征的物体,并说出组成这些物体的几何结构特征?它们由哪些基本几何体组成的?

6、以类似的方法,让学生思考、讨论、概括出棱锥、棱台的结构特征,并得出相关的概念,分类以及表示。

7、让学生观察圆柱,并实物模型演示,如何得到圆柱,从而概括出圆标的概念以及相关的概念及圆柱的表示。

8、引导学生以类似的方法思考圆锥、圆台、球的结构特征,以及相关概念和表示,借助实物模型演示引导学生思考、讨论、概括。

9、教师指出圆柱和棱柱统称为柱体,棱台与圆台统称为台体,圆锥与棱锥统称为锥体。

10、现实世界中,我们看到的物体大多由具有柱、锥、台、球等几何结构特征的物体组合而成。请列举身边具有已学过的几何结构特征的物体,并说出组成这些物体的几何结构特征?它们由哪些基本几何体组成的?

(三)质疑答辩,排难解惑,发展思维,教师提出问题,让学生思考。

1、有两个面互相平行,其余后面都是平行四边形的几何体是不是棱柱(举反例说明,如图)

2、棱柱的何两个平面都可以作为棱柱的底面吗?

3、课本P8,习题1.1 A组第1题。

4、圆柱可以由矩形旋转得到,圆锥可以由直角三角形旋转得到,圆台可以由什么图形旋转得到?如何旋转?

5、棱台与棱柱、棱锥有什么关系?圆台与圆柱、圆锥呢?

四、巩固深化

练习:课本P7 练习1、2(1)(2) 课本P8 习题1.1 第2、3、4题 五、归纳整理

由学生整理学习了哪些内容 六、布置作业

课本P8 练习题1.1 B组第1题

课外练习 课本P8 习题1.1 B组第2题

2023高一数学教案(篇5)

教学目标:①掌握对数函数的性质。

②应用对数函数的性质可以解决:对数的大小比较,求复

合函数的定义域、值 域及单调性。

③ 注重函数思想、等价转化、分类讨论等思想的渗透,提高

解题能力。

教学重点与难点:对数函数的性质的应用。

教学过程设计:

⒈复习提问:对数函数的概念及性质。

⒉开始正课

1 比较数的大小

例 1 比较下列各组数的大小。

⑴loga5.1 ,loga5.9 (a>0,a≠1)

⑵log0.50.6 ,logЛ0.5 ,lnЛ

师:请同学们观察一下⑴中这两个对数有何特征?

生:这两个对数底相等。

师:那么对于两个底相等的对数如何比大小?

生:可构造一个以a为底的对数函数,用对数函数的单调性比大小。

师:对,请叙述一下这道题的解题过程。

生:对数函数的单调性取决于底的大小:当0

调递减,所以loga5.1>loga5.9 ;当a>1时,函数y=logax单调递

增,所以loga5.1

板书:

解:Ⅰ)当0

∵5.1<5.9 loga5.1="">loga5.9

Ⅱ)当a>1时,函数y=logax在(0,+∞)上是增函数,

∵5.1<5.9 ∴loga5.1

师:请同学们观察一下⑵中这三个对数有何特征?

生:这三个对数底、真数都不相等。

师:那么对于这三个对数如何比大小?

生:找“中间量”, log0.50.6>0,lnЛ>0,logЛ0.5<0;lnл>1,

log0.50.6<1,所以logЛ0.5< log0.50.6< lnЛ。

板书:略。

师:比较对数值的大小常用方法:①构造对数函数,直接利用对数函

数 的单调性比大小,②借用“中间量”间接比大小,③利用对数

函数图象的位置关系来比大小。

2 函数的定义域, 值 域及单调性。

2023高一数学教案(篇6)

目标:

1.让学生熟练掌握二次函数的图象,并会判断一元二次方程根的存在性及根的个数 ;

2.让学生了解函数的零点与方程根的联系 ;

3.让学生认识到函数的图象及基本性质(特别是单调性)在确定函数零点中的作用 ;

4。培养学生动手操作的能力 。

二、教学重点、难点

重点:零点的概念及存在性的判定;

难点:零点的确定。

三、复习引入

例1:判断方程 x2-x-6=0 解的存在。

分析:考察函数f(x)= x2-x-6, 其

图像为抛物线容易看出,f(0)=-60,

f(4)0,f(-4)0

由于函数f(x)的图像是连续曲线,因此,

点B (0,-6)与点C(4,6)之间的那部分曲线

必然穿过x轴,即在区间(0,4)内至少有点

X1 使f(X1)=0;同样,在区间(-4,0) 内也至

少有点X2,使得f( X2)=0,而方程至多有两

个解,所以在(-4,0),(0,4)内各有一解

定义:对于函数y=f(x),我们把使f(x)=0的实数 x叫函数y=f(x)的零点

抽象概括

y=f(x)的图像与x轴的交点的横坐标叫做该函数的零点,即f(x)=0的解。

若y=f(x)的图像在[a,b]上是连续曲线,且f(a)f(b)0,则在(a,b)内至少有一个零点,即f(x)=0在 (a,b)内至少有一个实数解。

f(x)=0有实根(等价与y=f(x))与x轴有交点(等价与)y=f(x)有零点

所以求方程f(x)=0的根实际上也是求函数y=f(x)的零点

注意:1、这里所说若f(a)f(b)0,则在区间(a,b)内方程f(x)=0至少有一个实数解指出了方程f(x)=0的实数解的存在性,并不能判断具体有多少个解;

2、若f(a)f(b)0,且y=f(x)在(a,b)内是单调的,那么,方程f(x)=0在(a,b)内有唯一实数解;

3、我们所研究的大部分函数,其图像都是连续的曲线;

4、但此结论反过来不成立,如:在[-2,4]中有根,但f(-2)0, f(4) 0,f(-2) f(4)

5、缺少条件在[a,b]上是连续曲线则不成立,如:f(x)=1/ x,有f(-1)xf(1)0但没有零点。

四、知识应用

例2:已知f(x)=3x-x2 ,问方程f(x)=0在区间[-1,0]内没有实数解?为什么?

解:f(x)=3x-x2的图像是连续曲线, 因为

f(-1)=3-1-(-1)2 =-2/30, f(0)=30-(0)2 =-10,

所以f(-1) f(0) 0,在区间[-1,0]内有零点,即f(x)=0在区间[-1,0]内有实数解

练习:求函数f(x)=lnx+2x-6 有没有零点?

例3 判定(x-2)(x-5)=1有两个相异的实数解,且有一个大于5,一个小于2。

解:考虑函数f(x)=(x-2)(x-5)-1,有

f(5)=(5-2)(5-5)-1=-1

f(2)=(2-2)(2-5)-1=-1

又因为f(x)的图像是开口向上的抛物线,所以抛物线与横轴在(5,+)内有一个交点,在( -,2)内也有一个交点,所以方程式(x-2)(x-5)=1有两个相异数解,且一个大于5,一个小于2。

练习:关于x的方程2x2-3x+2m=0有两个实根均在[-1,1]内,求m的取值范围。

五、课后作业

p133第2,3题

成语首拼