关于人教版五年级上册数学教案5篇
教师需要对教学内容进行优化,选择适合学生的材料,增加趣味性和实用性,激发学生的学习兴趣。下面是小编为大家整理的人教版五年级上册数学教案,如果大家喜欢可以分享给身边的朋友。
教学目标
1、知识目标:通过教学,使学生初步理解同分母分数加减的算理,掌握同分母分数加减法的计算法则并能正确熟练地计算。
2、能力目标:在具体情景中对整数加减法的意义进行迁移,进一步理解分数加减法的意义,提高学生归纳、概括问题的能力。
3、情感目标:通过学生的自主探索和合作交流,培养合作意识,让学生体验成功。
4、重点能正确进行同分母分数加、法计算。
5、难点能熟练掌握并养成最后计算结果能约分的要约分的习惯。
教学过程
创境激疑一、复习铺垫,引出新知:
1、师:同学们,前面我们刚刚学过有关分数的知识,你能举了分数的例子吗?(学生举例。)
师板书两个分数:看着这两个分数,你能想到哪些有关的分数知识?(学生回答。)
2、师:同学们复习的很全面,咱们再具体做个练习好吗?
合作探究二、新课讲授,总结规律:
1、学习例题1:
师:刚才的复习告诉我,大家对分数知识掌握的很好。还记得在三年级的时候,我们对分数的计算已经有了初步的了解,今天我们继续学习“同分母的分数加减法”。教师板书课题。
A、创设情境,出示题目:
B、出示例题1
师:请说出图上有什么信息?
(1)学生分析读题,列式,师:为什么用加法计算?小数加法和整数加法的含义
(2)你能大胆的猜测一下计算结果吗?学生说出得数。
请用自己喜欢的方法来证明得数是正确的。同桌或小组内的同学交流自己的方法。
(3)方法展示:
图示法、线段法、数分数单位法。
2、学习例题2
师:刚刚学习了同分母的加法,接下来我们继续研究同分母的减法。
A、教师板书两个分数、
(1)师:你能用这两个分数编一道减法应用题吗?学生思考并回答。
(2)师:老师也用这两个分数编了一道减法应用题,想看吗?
B、出示例题2:为什么用减法呢?小数减法的含义和整数减法的含义。
请仿照例题1的计算方法计算得数。
出示例3、电视台少儿频道各类节目播出时间分配情况如下:
节目类型动画类游戏类教育类科普类其它。
时间分配
(1)前三类节目共占每天节目播出时间的几分之几?
(2)其它节目占每天播出时间的几分之几?
学生自己独立解答。
拓展应用做一做1题
总结这节课我们主要学习了什么内容?你能用一句话来概括他的计算法则吗?
教学内容:
人教版义务教育教科书五年级上册91页《三角形的面积》,92页例2及练习题。
教学目标:
1、理解并掌握三角形面积计算公式,能够应用公式解决一些简单的问题,培养应用已有知识解决新问题的能力。
2、经历探索三角形面积计算方法的过程,培养学生观察、操作、推理、概括的能力,体会转化的思想。
3、在解决实际问题的过程中体验数学与生活的联系,进一步培养学生学习数学的兴趣。
教学重点:
三角形面积公式的推导及应用公式进行计算。
教学难点:
理解三角形面积的推导过程,感受转化的数学思想和方法。
教学准备:
教师准备:多媒体课件、红领巾、实验记录单。
学生准备:各种完全相同的三角形。
教学过程:
(一)复习铺垫,创设情境。
1、复习旧知,做好铺垫。回忆平行四边形面积计算公式及推导过程。
【复习铺垫是小学数学重要的环节,对于引起学生对已有知识的回忆,帮助学生更有效地参与到新知的探究过程中有着重要的作用。】
2、猜谜语:一块布料三角样,颜色鲜红真漂亮。少先队员才能有,每天佩戴不要忘。学生猜谜。
3、创设情境:要想做这样的一条红领巾,需要多少布呢?也就是计算什么?
4、揭示课题。
【设计意图:在这个环节中利用学生熟悉的红领巾实物猜谜,以及做一条红领巾要用多少布这样的事例,激起了学生想知道怎样去求三角形面积的欲望,有效地调动学生的学习的兴奋点,学生的问题意识得到发展。】
(二)动手操作,探索交流。
活动一:小组合作拼一拼、摆一摆。要求:请你用手中两个完全一样的三角形拼一拼,看看能拼成我们以前学过的哪种图形,快来试一试吧!小组动手操作并展示交流。
活动二:观察讨论,完成下面的实验记录。实验记录两个完全一样的三角形可以拼成平行四边形。
通过观察我们发现:
1、三角形的底和拼成的平行四边形的底( ),三角形的高和拼成的平行四边形的高( )。
2、拼成的平行四边形的面积是三角形面积的( ),三角形的面积是拼成的平行四边形面积的( )。
3、因为,平行四边形的面积等于( )X( ), 所以,三角形的面积=( )学生根据要求进行小组活动,然后交流汇报。
【设计意图:本环节让学生充分经历了操作、观察、推理、概括等数学活动与数学思考,发现了三角形的面积计算公式。在合作探究过程中,把自主学习的权力还给了学生,培养了学生的动手能力和分析能力,顺利实现原有数学知识结构的扩充和新知结构的建立,使学生真正感受到数学方法的内在魅力。】
(三)运用公式,解决问题。
出示例2:学校计划做的红领巾的底是100㎝,高是33㎝,红领巾的面积是多少?
(1)学生尝试完成。
(2)交流做法和结果。
【设计意图:本环节的设计既解决了课前的问题,还让学生感知到数学学习能够方便生活,有效的提高学生学好数学的自信心。】
(四)巩固应用,举一反三。
第一关:辨一辨。
1、两个面积相等的三角形可以拼成一个平行四边形。
2、三角形的面积等于平行四边形面积的一半。
3、用两个完全一样的直角三角形可以拼成一个长方形,也可以拼成一个平行四边形。
第二关:指出下面三角形的底和高,并说出怎样计算它的面积。 (单位:厘米)
第三关:制作两个这样的交通警示标志,需要多少铁皮?第四关:求出下图中三角形和平行四边形的面积。你发现了什么?
【设计意图:本环节我依据教学目标和学生在学习中存在的问题,采用智慧闯关的形式设计有针对性、层次分明的练习题组,激发了学生的学习兴趣,让学生在解决这些问题的过程中,进一步理解、巩固新知,训练思维的灵活性、敏捷性、创造性,使学生的创新精神和实践能力得到进一步提高。同时也强化了本节课的教学重点。】
(五)质疑总结,反思评价。
课件出示:今天你有什么收获?
(2)你要提醒大家注意什么?
(3)你感觉自己今天表现如何?
(4)我还想说……
【设计意图:让学生以同桌为单位,每位学生充分发言,交流学习所得。在评价方面,先让学生自我评价,接着让学生互相评价,增强学生学习数学知识的自信心和荣誉感,同时培养了学生敢于质疑、勇于创新的精神。】
五、板书设计。
教学目标:
1、通过欣赏与设计图案,使同学进一步熟悉已学过的对称、平移、旋转等现象。
2、欣赏美丽的对称图形,并能自身设计图案。
3、同学感受图形的美,进而培养同学的空间想象能力和审美意识。
重点难点:
1、能利用对称、平移、旋转等方法绘制精美的图案。
2、感受图形的内在美,培养同学的审美情趣。
教学准备:幻灯片、课件。
教学过程:
一、情境导入
利用课件显示课本第7页四幅美丽的图案,配音乐,让同学欣赏。
二、学习新课
(一)图案欣赏:
1、伴着动听的音乐,我们欣赏了这四幅美丽的图案,你有什么感受?
2、让同学尽情发表自身的感受。
(二)说一说:
1、上面每幅图的图案是由哪个图形平移或旋转得到的?
2、上面哪幅图是对称的?先让同学边观察讨论,再进行交流。
三、巩固练习
(一)反馈练习:
完成第8页3题。
1、这个图案我们应该怎样画?
2、仔细观察这几个图案是由哪个图形经过什么变换得到的?
(二)拓展练习:
1、分别利用对称、平移和旋转创作一个图案。
2、 交流并欣赏。说一说好在哪里?
四、全课总结
对称、平移和旋转知识广泛地应用于平面、立体的建筑艺术和几何图像上,而且还涉和到其它领域,希望同学们平时注意观察,都成为杰出的设计师。
五、安排作业:
教材第9页第5题。
板书设计:
欣赏和设计
图案1 图案2
图案3 图案4
对称、平移和旋转知识有广泛的应用。
教学目标:
1、通过学生观察、操作等活动认识长方体,知道长方体的面、棱、顶点以及长、宽、高的含义,掌握长方体的基本特征,理解它们之间的关系。
2、学生在生活中进一步积累探索经验,增强空间观念,发展数学思维。
3、学生体会立体图形学习与实际生活的联系,感受其价值,增强数学的兴趣和学好数学的自信心。
教学重难点:
重点:探索长方体的特征。
难点:理解长方体面、棱、顶点之间的关系,建立空间想象。
教学准备:
每生准备一个长方体,长方体框架;师准备教学道具和课件。
教学过程:
一、导入
同学们,我们已经学过很多图形了,大家回想一下我们都学过哪些?现在老师在黑板上画出两个最简单的图形,请你们快速说出它们的名字。
(师在黑板上画出一个点,一条直线)
生:点、线
师:我的这个点和线都画在一个什么上?
生:黑板、面
师:对,都画在一个面上。现在请你们拿出身边的长方体,找一找长方体中的点、线、面。
师生摸一摸,指一指,说一说。
二、新授
师:长方体中的线有一个固定的名字叫做“棱”,长方体中的点也有一个固定的名字叫做“顶点”。
师:我们现在初步了解了长方体的面、棱、顶点。如果大家想更多的了解长方体,你能提出哪些问题呢?
生:长方体有几个面,几条棱,几个顶点……
师:大家提出的既有关于面、棱、顶点数量的问题,又有关于它们之间关系的问题。下面就请大家小组合作学习,解决课件中给出的这些问题。
小组合作学习,完成以下问题:
面1、长方体有几个面?
2、每个面是什么形状?
3、哪些面是完全相同的?
棱1、长方体有几条棱?
2、哪些棱长度相等?
顶点1、长方体有几个顶点?
你还有什么新的发现?棱是怎么形成的?顶点是怎么形成的?
师:我们先来解决一个最简单的问题,长方体有几个顶点?
生:8个
师:怎样有序地数?
生:可以先依次数上面的四个,再依次数下面的四个。
师:长方体有几个面呢?
生:6个
师:谁能有次序地数出这些面?
师:谁能用具体的方位名词有次序地数出来?
师:长方体有6个面,依次是前面、后面、左面、右面、上面、下面。
师:还可以怎么数?
师:我们在第一单元学习了观察物体,现在试着从一个角度观察我手中的长方体,你最多能看到几个面?
生:3个
师:这三个面的对面都看不到,所以用3乘2就是总数。用这样的方法也能数出长方体的面数。
师:每个面是什么形状?
生:长方形,有的长方体中也有正方形。
师:长方体的每个面都是长方形,特殊情况下有两个相对的面是正方形。
师:长方形哪些面是完全相同的?
生:前面和后面,左面和右面,上面和下面
师:你们说的前与后,左与右,上与下都是相对的关系,所以简单说就是相对的面完全相同。你们是怎么得出这个结论的?
生:我们是看出来的。
师:生活中我们经常有看错人的时候,所以用眼睛看出来的不一定正确,你们有什么方法能证明自己的结论是正确的吗?
生:可以把长方体拆开,拿相对的面对比,如果完全重合,就说明相对的面完全相同。
师:你的方法真棒,那我们就一起来操作和证明一下。
师:相对的两个面放在一起完全重合了,说明大家的结论是正确的。
师:我们来理解一下什么是完全相同?完全相同的两个面,它们的面积相等,周长相等,长相等,宽也相等。
师:关于长方体的棱,你们知道有几条吗?
生:12条
师:谁能有次序地、不重不漏地数出来?
请学生来数
师:刚刚那位同学的数法我再来展示一下,同学们仔细观察,他是分成几组来数的?每组有几条?
生:三组,每组有4条。
师:为什么要这样数?
生:因为每一组中的棱长度是相等的。
师:哪些位置的棱长度相等呢?
生:位置相对的棱
师:我们用尺子量一量是否相等。
师:确实,相对的四条棱长度相等。
师展示长方体框架:假如这个框架中缺少了一条棱,你能想象出缺的这条棱的样子吗?为什么?
生:因为相对的棱长度相等,可以通过相对的棱想象缺的那条棱的样子。
师:如果在一组相对的棱中去掉三根,剩一根,你能想象出去完整的长方体的样子吗?为什么?
生:能,可以通过剩下的那根,想象出跟它相对的其他三条棱的样子。
师:按这样的道理,我们在每一组棱中都去掉三根,依然可以想象出完整的长方体的样子。我来试试去掉这些棱后,会是什么样子。
生:只剩下三根棱。
师:这三根棱有什么特殊?
生:它们相交于一个顶点。
师:对。这是三条非常特殊的棱,我们把它们分别称作长方体的“长”“宽”“高”。也就是说相交于一个顶点的三条棱分别叫做长方体的“长”“宽”“高”。在一个长方体中,我们通常把竖着的这条棱叫做“高”,正对着我们的棱叫做“长”,“长”旁边的那条是“宽”。大家来指一指我手中的这个长方体的长、宽、高。
拿长方体模型横放、竖放、侧放,并让学生指出在不同摆放的情况下的长、宽、高,体会同一个长方体因摆放位置不同而引起的长宽高的变化。
师:根据相对的棱相等,所以“长”对面的棱也是“长”,“宽”对面的棱也是“宽”,“高”对面的棱也是“高”,由此可知,长方体有4条长,4条宽,4条高。共计12条。
师:如果让大家利用小木棒来制作一个长方体框架,思考一下需要几组木棒,共几根?在下面给出的木棒中你可以如何搭配来组建长方体,它们的长宽高分别是多少?
出示例题:
四根8厘米,八根3厘米,四根6厘米,两根5厘米。
生1:长8,宽3,高6
生2:长8,宽3,高3
生3:长6,宽3,高3
师:生2和生3搭建的长方体都是有两个相对的面是正方形的特殊长方体,想象一下,把长缩短到3厘米,这个长方体会变成什么样子?
生:变成了正方体
师:对,变成了长、宽、高都是3厘米的正方体,由此我们可以得出这样的结论:长、宽、高都相等的长方体是正方体,正方体是一种特殊的长方体
师:关于面、棱、顶点,它们之间有什么关系呢?棱和面有什么关系?棱和顶点有什么关系?
生:两个面相交的位置是棱,两条棱相交的位置是顶点。
巩固练习
书上例题1、2
小结
作业布置
练习册《长方体的认识》
一、教材内容:
人教版小学数学五年级下册44页
二、学情分析
五年级学生已经有了一定的空间想象力、独立思考能力和小组合作交流的能力,学生的动手能力较强,喜欢自己通过动手、动脑去大胆探索问题,可以在活动中发现问题,总结规律。所以在学生已经认识了长方体和正方体的特征后,安排“探索图形”这个综合与实践活动,让学生通过观察实物,小组合作探究大正方体中各种涂色问题,并总结出规律,进一步培养学生的空间想象力和概括推理能力。
三、教学目标
1、借助正方体涂色问题,通过实际操作、演示、想象等活动发现小正方体涂色情况的位置特征和规律。
2、在探索规律的过程中,经历从特殊到一般的归纳过程,获得一些研究数学问题的方法、及分类、 归纳、推理、模型等数学思想和经验。
3、在解决问题的过程中,感受数学的有趣,激发主动探索、勇于实践的精神和实事求是的科学态度。
教学重点:借助正方体涂色问题,通过实际操作、演示、想象等活动发现小正方体涂色情况的位置特征和规律。
教学难点:在探索规律的过程中,经历从特殊到一般的归纳过程,获得一些研究数学问题的方法、及分类、 归纳、推理、模型等数学思想和经验。
四、 教学准备
魔方、正方体教具(教师)、正方体教具(学生)、学生小组探究卡
五、教学过程
一、复习引入
(一)、同学们玩过魔方吗?它是一个什么几何形体?(正方体),正方体有什么特征呢?
学生:有8个顶点、12条长度相等的棱、6个大小相等的面。
教师随机板书正方体的特征。
【设计意图:通过学生熟悉的魔方引入正方体,不仅复习了正方体的特征,为新课的学习做好良好铺垫,也使学生感受到数学来源于生活。】
(二)、出示①②③组图,它们分别是由多少块小正方体组成的吗?
生:图①2×2×2=8(块)
图②3×3×3=27(块)
图③4×4×4=64(块)
师:在它们的表面涂上颜色,那么这些小正方体都会被涂上颜色吗?
生:不是,有的会被涂上颜色,有的不会被涂上颜色。
师:涂色的面数有几种情况?
学生观察分类:3面涂色、两面涂色、一面涂色、没有涂色。
教师随机板书:3面 两面 一面 没有涂色
师:今天我们就一起来探究正方体表面涂色的问题——探究图形
教师板书课题。
二、探究新知
(一)探究三面涂色的问题
师:三面涂色的小正方体分别有多少块呢?
生观察回答:图①有8块、图②有8块、图③有8块。
师:怎么都是8块?分别在哪里?
生:都在大正方体的8个顶点上。
师:那么棱长上有5个、6个或7个小正方体的图形呢?三面涂色的小正方体有多少块?
生:也是8块。
师:这跟什么有关系?
生:跟正方体的顶点有关系,因为有8个顶点,顶点上的小正方体是三面涂色的。
教师随机板书:顶点
(二)探究两面涂色的问题
师:两面涂色的小正方体分别又有多少块呢?是否也存在一定的规律呢?请同学们利用学具四人小组进行探究。
小组合作提示:
1、四人合作,利用学具探究两面涂色的小正方体有多少块?
2、试着将发现的结果用列式的方法表示在小组探究卡的表格中
小组探究
小组汇报
生:一面有4块,6面一共有12块。
师:你是怎么知道的?为什么除以2呢?如果是正方体块数非常多的话,用这种方法还方便吗?还有其他的方法吗?
生:一条棱上去掉三面涂色的2块剩下的一块就是两面涂色的,而正方体有12条棱,一共就有1×12=12块.
师:③号图形两面涂色的有多少块呢?你发现两面涂色的小正方体在哪里?
生:在棱上。一条棱上去掉三面涂色的2块剩下的两块就是两面涂色的,而正方体有12条棱,一共就有2×12=24块.
师:那棱长是5块、6块的呢?怎样列式计算?
生:(5-2)×12=36块 (6-2)×12=48块
师:用字母n表示棱长上的小正方体的块数,怎样表示出两面涂色的小正方体块数?
生:(n-2)×12
师板书:在棱上 (n-2)×12
(三)探究一面涂色的问题
师:一面涂色的小正方体有多少块呢?试着借助刚才的经验进行探究并填表。
小组合作探究
小组汇报(使用希沃软件同屏互传,让孩子边展示列式边解释方法)
生:②号图形一面涂色的小正方体在每个面上,一面有1个一面涂色的,6个面一共就有6块。③号一面有4个一面涂色的,6个面一共就有24块。
师:你是怎么知道一面有1块、4块一面涂色的呢?
生:数的
师:如果正方体的块数非常多的时候呢?你觉得这种方法怎么样?
生:有局限性
师:是的,不具有一般化,并且还需要一定的计算前提。那还有什么更好的办法吗?
生:②号图形一条棱上去掉三面涂色的剩下的一块是一面涂色的这个正方形的棱长数,而这个小正方形的棱长数是(3-2)得到的,6个面就有(3-2)×(3-2)×6=6块。
生:③号图形一条棱上去掉三面涂色的剩下的两块是一面涂色的这个正方形的棱长数,而这个小正方形的棱长数是(4-2)得到的,6个面就有(4-2)×(4-2)×6=24块。
师:看来你们发现了一定的规律,棱长是5块、6块的图形呢怎么计算一面涂色的小正方体块数?
生:(5-2)×(5-2)×6=54块
(6-2)×(6-2)×6=96块
师:用字母怎么表示?
生:(n-2)×(n-2)×6=(n-2)2×6
(四)探究没有涂色的问题
师:没有涂色的小正方体有多少块呢?怎么计算?
生:可以用小正方体的总块数减去三面涂色、两面涂色以及一面涂色的。
师:这也确实是个办法。如果我只想知道没有涂色的块数是不是还需要算出其他的情况呢?是不是有些麻烦?没有涂色的小正方体在哪里呢?
生:在里面
师:有什么办法知道呢?
生:拆开看一看
师用教具给学生演示拆开的过程,观察里面没有涂色的小正方体块数
师:现在你知道有多少块没有涂色了吗?
生:②号图形有一块没有涂色
③号图形有8块没有涂色的
师:可以用算式计算出来吗?结合刚才拆的过程我们再看一看动画演示过程看看你能不能用列式的方法计算出没有涂色的块数。
组织学生观看动画过程。
生:②号图形每条棱上有3块,去掉两块三面涂色的剩下的一块就是中间正方体的棱长数,因此中间没有涂色的小正方体块数(3-2)×(3-2)×(3-2)=1块。
生:③号图形每条棱上有4块,去掉两块三面涂色的剩下的两块就是中间正方体的棱长数,因此中间没有涂色的小正方体块数(4-2)×(4-2)×(4-2)=8块。
师:真棒!你能试试棱长是5、6块的吗?
生:(5-2)×(5-2)×(5-2)=27块
(6-2)×(6-2)×(6-2)=64块
师:用字母怎么表示?
生:(n-2)×(n-2)×(n-2)=(n-2)3
三、知识应用
出示棱长由1000块小正方体拼成的大正方体,请问三面、两面、一面、没有涂色的小正方体分别有多少块?
学生计算汇报
四、课堂小结
通过这节课的探究,你能说说你用什么方法学会了本节课的知识?
五、版书设计
探索图形
顶点上 棱上 面上 中心
正方体的特征:8个顶点 12条棱 6个面
三面 两面 一面 没有涂色
8 (n-2)×12 (n-2)2×6 (n-2)3