成语

高中数学教案范文15篇(高中数学幂函数教案)

高中数学教案范文15篇(高中数学幂函数教案)


高中数学教案范文(15篇)

教案中对每个课题或每个课时的教学内容,教学步骤的安排,教学方法的选择,板书设计,教具或现代化教学手段的应用,各个教学步骤教学环节的时间分配等等,都要经过周密考虑,精心设计而确定下来,体现着很强的计划性。接下来是小编为大家整理的高中数学教案大全,希望大家喜欢!

高中数学教案范文(精选篇1)

《充分条件与必要条件》

教学准备

教学目标

运用充分条件、必要条件和充要条件

教学重难点

运用充分条件、必要条件和充要条件

教学过程

一、基础知识

(一)充分条件、必要条件和充要条件

1.充分条件:如果A成立那么B成立,则条件A是B成立的充分条件。

2.必要条件:如果A成立那么B成立,这时B是A的必然结果,则条件B是A成立的必要条件。

3.充要条件:如果A既是B成立的充分条件,又是B成立的必要条件,则A是B成立的充要条件;同时B也是A成立的充要条件。

(二)充要条件的判断

1若成立则A是B成立的充分条件,B是A成立的必要条件。

2.若且BA,则A是B成立的充分且不必要条件,B是A成立必要且非充分条件。

3.若成立则A、B互为充要条件。

证明A是B的充要条件,分两步:

_

(1)充分性:把A当作已知条件,结合命题的前提条件推出B;

(2)必要性:把B当作已知条件,结合命题的前提条件推出A。

二、范例选讲

例1.(充分必要条件的判断)指出下列各组命题中,p是q的什么条件?

(1)在△ABC中,p:A>B q:BC>AC;

(2)对于实数x、y,p:x+y≠8 q:x≠2或y≠6;

(3)在△ABC中,p:SinA>SinB q:tanA>tanB;

(4)已知x、y∈R,p:(x-1)2+(y-2)2=0 q:(x-1)(y-2)=0

解:(1)p是q的充要条件 (2)p是q的充分不必要条件

(3)p是q的既不充分又不必要条件 (4)p是q的充分不必要条件

练习1(变式1)设f(x)=x2-4x(x∈R),则f(x)>0的一个必要而不充分条件是( C )

A、x<0 B、x<0或x>4 C、│x-1│>1 D、│x-2│>3

例2.填空题

(3)若A是B的充分条件,B是C的充要条件,D是C的必要条件,则A是D的 条件.

答案:(1)充分条件 (2)充要、必要不充分 (3)A=> B <=> C=> D故填充分。

练习2(变式2)若命题甲是命题乙的充分不必要条件,命题丙是命题乙的必要不充分条件,命题丁是命题丙的充要条件,则命题丁是命题甲的( )

A、充分不必要条件 B、必要不充分条件 C、充要条件 D、既不充分又不必要条件

例4.(证明充要条件)设x、y∈R,求证:|x+y|=|x|+∣y∣成立的充要条件是xy≥0.

证明:先证必要性:即|x+y|=|x|+∣y∣成立则xy≥0,

由|x+y|=|x|+∣y∣及x、y∈R得(x+y)2=(|x|+∣y∣)2即|xy|=xy,∴ xy≥0;

再证充分性即:xy≥0则|x+y|=|x|+∣y∣

若xy≥0即xy>0或xy=0

下面分类证明

(Ⅰ)若x>0,y>0则|x+y|=x+y=|x|+∣y∣

(Ⅱ)若x<0,y<0则|x+y|=(-x)+(-y)=|x|+∣y∣

(Ⅲ)若xy=0,不妨设x=0则|x+y|=∣y∣=|x|+∣y∣

综上所述: |x+y|=|x|+∣y∣

∴|x+y|=|x|+∣y∣成立的充要条件是xy≥0.

例5.已知抛物线y=-x2+mx-1 点A(3,0) B(0,3),求抛物线与线段AB有两个不同交点的充要条件.

解:线段AB:y=-x+3(0≤x≤3)-----------(1)

抛物线: y=-x2+mx-1---------------(2)

(1)代入(2)得:x2-(1+m)x+4=0--------(3)

抛物线y=-x2+mx-1与线段AB有两个不同交点,等价于方程(3)在[0,3]上有两个不同的解.

高中数学教案范文(精选篇2)

集合的含义与表示

一.教材分析:集合概念及其基本理论,称为集合论,是近、现代数学的一个重要的基础,

一方面,许多重要的数学分支,都建立在集合理论的基础上。另一方面,集合

论及其所反映的数学思想,在越来越广泛的领域种得到应用。

二.目标分析:

教学重点.难点

重点:集合的含义与表示方法. 难点:表示法的恰当选择.

教学目标

l.知识与技能

(1)通过实例,了解集合的含义,体会元素与集合的属于关系;

(2)知道常用数集及其专用记号; (3)了解集合中元素的确定性.互异性.无序性;

(4)会用集合语言表示有关数学对象;

2. 过程与方法

(1)让学生经历从集合实例中抽象概括出集合共同特征的过程,感知集合的含义.

(2)让学生归纳整理本节所学知识.

3. 情感.态度与价值观

使学生感受到学习集合的必要性,增强学习的积极性.

三. 教法分析

1. 教学方法:学生通过阅读教材,自主学习.思考.交流.讨论和概括,从而更好地完成本节课的教学目标.2. 教学手段:在教学中使用投影仪来辅助教学.

四.过程分析

(一)创设情景,揭示课题

1.教师首先提出问题:(1)介绍自己的家庭、原来就读的学校、现在的班级。

(2)问题:像“家庭”、“学校”、“班级”等,有什么共同特征?

引导学生互相交流. 与此同时,教师对学生的活动给予评价.

2.活动:(1)列举生活中的集合的例子;(2)分析、概括各实例的共同特征

由此引出这节要学的内容。

设计意图:既激发了学生浓厚的学习兴趣,又为新知作好铺垫

(二)研探新知,建构概念

1.教师利用多媒体设备向学生投影出下面7个实例:

(1)1—20以内的所有质数;(2)我国古代的四大发明;

(3)所有的安理会常任理事国; (4)所有的正方形;

(5)海南省在20--年9月之前建成的所有立交桥;

(6)到一个角的两边距离相等的所有的点;

(7)国兴中学20--年9月入学的高一学生的全体.

2.教师组织学生分组讨论:这7个实例的共同特征是什么?

3.每个小组选出——位同学发表本组的讨论结果,在此基础上,师生共同概括出7个实例的特征,并给出集合的含义.一般地,指定的某些对象的全体称为集合(简称为集).集合中的每个对象叫作这个集合的元素.

4.教师指出:集合常用大写字母A,B,C,D,?表示,元素常用小写字母a,b,c,d?表示.

设计意图:通过实例让学生感受集合的概念,激发学习的兴趣,培养学生乐于求索的精神

(三)质疑答辩,发展思维

1.教师引导学生阅读教材中的相关内容,思考:集合中元素有什么特点?并注意个别辅导,解答学生疑难.使学生明确集合元素的三大特性,即:确定性.互异性和无序性.只要构成两个集合的元素是一样的,我们就称这两个集合相等.

2.教师组织引导学生思考以下问题:

判断以下元素的全体是否组成集合,并说明理由:

(1)大于3小于11的偶数;(2)我国的小河流. 让学生充分发表自己的建解.

3. 让学生自己举出一些能够构成集合的例子以及不能构成集合的例子,并说明理由.教师对学生的学习活动给予及时的评价.

4.教师提出问题,让学生思考

b是 (1)如果用A表示高—(3)班全体学生组成的集合,用a表示高一(3)班的一位同学,

高一(4)班的一位同学,那么a,b与集合A分别有什么关系?由此引导学生得出元素与集合的关系有两种:属于和不属于.

如果a是集合A的元素,就说a属于集合A,记作a?A.

如果a不是集合A的元素,就说a不属于集合A,记作a?A.

(2)如果用A表示“所有的安理会常任理事国”组成的集合,则中国.日本与集合A的关系分别是什么?请用数学符号分别表示.

(3)让学生完成教材第6页练习第1题.

5.教师引导学生回忆数集扩充过程,然后阅读教材中的相交内容,写出常用数集的记号.并让学生完成习题1.1A组第1题.

6.教师引导学生阅读教材中的相关内容,并思考.讨论下列问题:

(1)要表示一个集合共有几种方式?

(2)试比较自然语言.列举法和描述法在表示集合时,各自的特点?适用的对象是什么?

(3)如何根据问题选择适当的集合表示法?

使学生弄清楚三种表示方式的优缺点和体会它们存在的必要性和适用对象。

设计意图:明确集合元素的三大特性,使学生弄清楚三种表示方式的优缺点,从而突破难点。

(四)巩固深化,反馈矫正

教师投影学习:

(1)用自然语言描述集合{1,3,5,7,9}; (2)用例举法表示集合A?{x?N|1?x?8}

(3)试选择适当的方法表示下列集合:教材第6页练习第2题.

设计意图:使学生及时巩固所学新知,体会三种表示方式存在的必要性和适用对象

(五)归纳小结,布置作业

小结:在师生互动中,让学生了解或体会下例问题:

1.本节课我们学习了哪些知识内容? 2.你认为学习集合有什么意义?

3.选择集合的表示法时应注意些什么?

设计意图:通过回顾,对概念的发生与发展过程有清晰的认识,回顾集合元素的三大特性及集合的三种表示方式。

作业: 1.课后书面作业:第13页习题1.1A组第4题.

2. 元素与集合的关系有多少种?如何表示?类似地集合与集合间的关系又有多少种

呢?如何表示?请同学们通过预习教材.

五.板书分析

高中数学教案范文(精选篇3)

一.说教材

地位及重要性

函数的单调性一节属高中数学第一册(上)的必修内容,在高考的重要考查范围之内。函数的单调性是函数的一个重要性质,也是在研究函数时经常要注意的一个性质,并且在比较几个数的大小、对函数的定性分析以及与其他知识的综合应用上都有广泛的应用。通过对这一节课的学习,既可以让学生掌握函数单调性的概念和证明函数单调性的步骤,又可加深对函数的本质认识。也为今后研究具体函数的性质作了充分准备,起到承上启下的作用。

教学目标

(1)了解能用文字语言和符号语言正确表述增函数、减函数、单调性、单调区间的概念;

(2)了解能用图形语言正确表述具有单调性的函数的图象特征;

(3)明确掌握利用函数单调性定义证明函数单调性的方法与步骤;并能用定义证明某些简单函数的单调性;

(4)培养学生严密的逻辑思维能力、用运动变化、数形结合、分类讨论的方法去分析和处理问题,以提高学生的思维品质;同时让学生体验数学的艺术美,养成用辨证唯物主义的观点看问题。

教学重难点

重点是对函数单调性的有关概念的本质理解。

难点是利用函数单调性的概念证明或判断具体函数的单调性。

二.说教法

根据本节课的内容及学生的实际水平,我尝试运用“问题解决”与“多媒体辅助教学”的模式。力图通过提出问题、思考问题、解决问题的过程,让学生主动参与以达到对知识的“发现”与接受,进而完成对知识的内化,使书本知识成为自己知识;同时也培养学生的探索精神。

三.说学法

在教学过程中,教师设置问题情景让学生想办法解决;通过教师的启发点拨,学生的不断探索,最终把解决问题的核心归结到判断函数的单调性。然后通过对函数单调性的概念的学习理解,最终把问题解决。整个过程学生学生主动参与、积极思考、探索尝试的动态活动之中;同时让学生体验到了学习数学的快乐,培养了学生自主学习的能力和以严谨的科学态度研究问题的习惯。

四.说过程

通过设置问题情景、课堂导入、新课讲授及终结阶段的教学中,我力求培养学生的自主学习的能力,以点拨、启发、引导为教师职责。

设置问题情景

[引例]学校准备建造一个矩形花坛,面积设计为16平方米。由于周围环境的限制,其中一边的长度长不能超过10米,短不能少于4米。记花坛受限制的一边长为x米,半周长为y米。

写出y与x的函数表达式;

求(1)中函数的值。

(用多媒体出示问题,并让学生思考)

通过问题情景的设置主要是为了达到以下两个目的:

⑴第一问为了复习回顾函数的表达式;

高中数学教案范文(精选篇4)

自我介绍:;我姓鞠,今后我将和大家一起学习高中数学课程,手机;讨论数学:;相信大家对于高中学习都充满着好奇,和初中相比,高;我们不急于上新课,我想和大家聊一聊数学,一起来思;一、为什么要学习数学?;数学是科学的大门和钥匙;马克思说:一种科学只有在成功地运用数学时,才算达;著名数学家华罗庚在《人民日报》精彩描述:数学在“;大家知道海王星是怎高中数学开学第一课

自我介绍:

我姓鞠,今后我将和大家一起学习高中数学课程,手机:????,QQ:????。告诉我的通讯方式是希望能拓宽与大家交流的平台。希望能与大家在课堂中相识,在生活中相知,不仅能成为你们知识的传授者,方法的指引者,更希望成为你们情感上的依赖者,成为朋友。

讨论数学:

相信大家对于高中学习都充满着好奇,和初中相比,高中课程与初中课程有很大的不同。今天这节课

我们不急于上新课,我想和大家聊一聊数学,一起来思考为什么要学习数学及如何学好数学这两个问题。

一、为什么要学习数学?

数学是科学的大门和钥匙。

马克思说:一种科学只有在成功地运用数学时,才算达到完善的地步。

著名数学家华罗庚在《人民日报》精彩描述:数学在“宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,生物之谜,日用之繁”等方面无处不有重要贡献。

大家知道海王星是怎么发现的,冥王星又是怎么被请出十大行星行列的???

其实在我们的周围有很多事情都是可以用数学可以来解决的,无非很多人都没有用数学的眼光来看待。

当然,我们学习的数学只是数学学科体系中很基础,很小的一部分。现在课本上学的未必能直接应用于生活,主要是为以后学习更高层次的理科打好基础,同时,也为了掌握一些数学的思考方法以及分析问题解决问题的思维方式。哲学家培根说过:“读诗使人灵秀,读历史使人明智,学逻辑使人周密,学哲学使人善辩,学数学使人聪明?”,也有人形象地称数学是思维的体操。下面我们通过具体的例子来体验一下某些数学思想方法和思维方式。

故事一:据说国际象棋是古印度的一位宰相发明的。国王很欣赏他的这项发明,问他的宰相要什么赏赐。聪明的宰相说,“我所要的从一粒谷子(没错,是1粒,不是1两或1斤)开始。在这个有64格的棋盘上,第一格里放1粒谷子,第二格里放2粒,第三格里放4粒,即每下一格粒数加倍,??如此下去,一直放满到棋盘上的64格。这就是我所要的赏赐。” 国王觉得宰相要的实在不多,就叫人按宰相的要求赏赐。但后来发现即使把全国所有的谷子抬来也远远不够。

数学游戏:两人相继轮流往长方形桌子上放同样大小的硬币,硬币一定要平放在桌面上,后放的硬币不能压在先放的硬币上,放最后一颗的硬币的人算赢。应该先放还是后放才有必胜的把握。

数学思想:退到最简单、最特殊的地方。

故事二:聪明的渡边:20世纪40年代末,手写工具突破性进展圆珠笔问世,它以价廉、方便、书写流利在社会上广泛流传,但写到20万字时就会因圆珠磨小而漏油,影响了销售。工程师们从圆珠质量入手,从改进油墨性能入手进行改良,但收效甚微。于是厂家打出广告:解决此问题获奖金50万元。当时山地制笔厂的青年工人渡边看到女儿把圆珠笔用到快漏油时就不用这一现象中受到启发,很好地解决了这一问题,你认为他会怎么做呢?

渡边的成功之处就在于思维角度新,从问题的侧面轻巧取胜。也正体现了数学学习中经常用到的发散式思维。在数学学习中,既要有集中式思维又要有发散式思维。集中式思维是一种常用思维渠道,即为对问题的归纳,联系思维方式,表现为对解题方法的模仿和继承;而发散式思维即对问题开拓、创新,表现为对问题举一反三,触类旁通。在解决具体问题中,我们应该将两种思维方式相结合。

学数学有利于培养人的思维品质:结构意识、整体意识、抽象意识、化归意识、优化意识、反思意识,尽管数学在培养学生的这些思维品质方面和其他学科存在着交集,但数学在其中的地位是无法被代替的。总之,学习数学可以使人思考问题更合乎逻辑,更有条理,更严密精确,更深入简洁,更善于创造??

二、如何学好高中数学

与初中数学相比,高中数学更注重提高数学思维能力,要求同学们在学习数学和运用数学解决问题时,不断地经历直观感知、观察发现、归纳类比、空间想象、抽象概括、符号表示、运算求解、数据处理、演绎证明、反思与建构等思维过程。高一数学一开始便在必修1中触及集合语言、函数模型,在必修2中涉及空间立体图形、坐标法、文字符号图形语言的转换,相对初中数学而言,抽象程度高,逻辑推理强,知识难度大,同学们会感到难学,认为数学神秘莫测,有些章节如听天书,从而可能会产生畏惧感。我认为学好高中数学要注意以下几点:

第一:培养数学兴趣

只有爱好某项事业或专业才能对它产生兴趣,才能激发学习、工作和自觉性与积极性;很难说哪个人天生爱好数学,爱好都是在生活和学习中逐渐产生的。如果你认为数学枯燥、乏味,那么你不可能真正学好数学,只有在学习中,逐渐发现数学的简单美、对称美以及数学高度的严谨与和谐,才能在学习过程中喜欢这门学科,才能产生兴趣。爱因斯坦说:兴趣是最好的老师;在诸多非智力因素中,兴趣处于一种特殊的地位,她可以激发一定的情感,唤起某种动机,培养人的意志,也可以改变人的态度。

第二:要改变一个观念。

有人会说自己的基础不好。那我问下什么是基础?今天所学的知识就是明天的基础。明天学习的知识就是后天的基础。所以要学好每一天的内容,那么你打的基础就是最扎实的了。所以现在你们是在同一个起跑线上的,无所谓基础好不好。今后的学习中,我会照顾大多数同学的数学基础。

第三:养成良好的学习习惯

㈠课前预习。怎样预习呢?就是自己在上课之前把内容先看一边,把自己不懂的地方做个记号或者打个问号,以至于上课的时候重点听,这样才能够很快提高自己的水平。但是预习不是很随便的把课本看一边,预习有个目标,那就是通过预习可以把书本后面的练习题可以自己独立的完成。一中的同学预习就已经有好几个层次了,先是课本,再是精编,再是高考题典,上课对于他们来说是第一轮高考复习。

㈡上课认真听讲。上课的时候准备课本,一只笔,一本草稿。做不做笔记你们自己决定,不过我不大提倡数学课做笔记的。不过有一点,有些知识点比较重要,课本上又没有的,我要求你们把它写在课本上的相应的空白地方。还有如果你觉得某个例题比较新或者比较重要,也可以把它记在书本的相应位置上,这样以后复习起来就一目了然了。那么草稿要来干什么的呢?课堂上你可以自己演算还有做课堂练习。

㈢关于作业。绝对不允许有抄作业的情况发生。如果我发现有谁抄作业,那么既然他这样喜欢抄,我就要你把当天的作业多抄几遍给我。那有人会问,碰到不会做的题目怎么办?有两个办法:一、向同学请教,请教做题目的思路,而不是整个过程和答案。同学之间也要相互帮助,如果你让他抄袭你的作业这样不是帮助他而是害他,这个道理大家应该明白吧。我非常提倡同学之间的相互讨论问题的,这样才能够相互促进提高。二、向老师请教,要养成多想多问的习惯。

㈣准备一本笔记本,作为自己的问题集。把平时自己不懂的和不大理解的还有易错的记录下来,并且要及时的消化,不懂的地方问老师。这是一个很好的办法,到考试的时候就可以有重点、有针对性的自己复习了。我高中的时候就是采用这样的方法把数学成绩提高。

好的开始是成功的一半,新的学期开始了,请大家调整好自己的思想,找到学习的原动力。播种一种思想,收获一种行为;播种一种行为,收获一种习惯;播种一种习惯,收获一种性格;播种一种性格,收获一种命运。愿每位同学都有个好的开始。

高中数学教案范文(精选篇5)

高中数学的内容多,抽象性、理论性强,高中很注重自学能力的培养,谁的自学能力强,那么在一定程度上影响着你的成绩以及将来你发展的前途。同时还要注意以下几点:

第一、对数学学科特点有清楚的认识

数学的概念、方法、思想都是人类长期实践中自然发展形成的,以数域的发展为例,从自然数到有理数到实数再到复数,都是由自然的认知冲突引起的。因此,在学习过程中我们有必要了解知识产生的背景,它的形成过程以及它的应用,让数学显得合情合理,浑然天成。数学中没有含糊不清的词,对错分明,凡事都要讲个为什么,只要按照数学规则去学去想就能融会贯通,但是如果不把来龙去脉想清楚而是“想当然”的`话,那就学不下去了。

第二、要改变一个观念。

有人会说自己的基础不好。那什么是基础?今天所学的知识就是明天的基础。明天学习的知识就是后天的基础,

所以只要学好每一天的内容,那么你打的基础就是最扎实的了。所以现在你们是在同一个起跑线上的,无所谓基础好不好。

第三、学数学要摸索自己的学习方法

学习重在方法,好的学习方法让学生事半功倍。学习、掌握并能灵活应用数学的途径有很多,做习题、用数学知识解决各种问题是必需的,理解、学会证明、领会思想、掌握方法也是必需的。同时,要注意前后知识的衔接,类比地学、联系地学,既要从概念中看到它的具体背景,又要在具体的例子中想到它蕴含的一般概念。

相关文章推荐:

1.高中开学第一周教学反思

2.开学第一课教学反思精选

3.20--初中开学第一课教学反思【精选】

4.高三开学教学反思

5.高一信息技术教学反思

6.开学第一课语文教学反思

7.幼儿园开学第一课反思

8.高中英语教学反思精选

9.高中生物教育反思

10.20--开学第一课教学反思

高中数学教案范文(精选篇6)

开学了班主任们、各科的老师们都会给自己的学生抽时间专门讲一下开学第一课班会,分享了春季开学第一课的教案,欢迎借鉴!

在新开学这一特殊的时期,我们给孩子的不仅仅是这些,我们还要充分的信任他们,相信他们在这一学期肯定会表现突出。

教学目的:让学生尽快进行自我调整,明确奋斗目标,进入最佳的学习状态。

教学内容:重温规章制度,拟定新学期打算。

教学时间:一课时

教学过程:

一、常规教育

1、重温《小学生守则》和《小学生日常行为规范》,并在日常学习的过程中让学生知道什么行为是对的,什么是不对的,使学生养成良好的学习和生活习惯。

2、作息时间的安排:早上清洁时间、早读时间、午自习时间、放学时间、作业时间,并严格按照科学的作息时间(强调必须遵守)。

3、集体活动:要遵守学校的规章制度。

4、早读:书本教材、按学习进度读书、背诵。

5、课前准备:按课程表准备下节课的学习用品、相关书籍齐全。

6、上课听讲:坐姿端正、积极思考、发言大胆、不影响他人学习。

7、下课活动:注意安全、团结友爱互帮互助、上下楼梯不拥挤,课间不得在过道、走廊上追逐打闹、高声喧哗,不玩危险游戏,不疯赶打闹,不爬栏杆、云梯,做有意义的课间活动。

8、集合整队:快、静、齐。

9、午读:课外阅读资料,成立图书角,完成有关阅读习题。

10、放学要求:按时回家,不进“三室一厅”,不结伴玩耍,注意交通安全,严格站路队回家。

二、安全教育

1、不要将危险物品带到学校,美术课需要的小刀,不要随便拿出来玩。使用时要小心,以免受伤。

2、下课活动时要团结友爱互帮互助,上下楼梯不拥挤,走右边,不要跑。不趴在走廊外的栏杆上。不玩危险游戏,不疯赶打闹,不爬栏杆、云梯,做有意义的课间活动。切忌猛追猛打,要避免发生扭伤、碰伤等危险。

3、走出校园也要注意交通安全。(行人靠右走,过马路要走斑马线,注意观察来往车辆,红灯停,绿灯行,遵守交通规则。)饮食安全(不吃过期、腐烂食品,有毒的药物,不购买用竹签串起的食物和油炸的食物:竹签容易伤人,食品卫生得不到保证,油炸食品有致癌物质。)同学们我们要将安全知识时时记,注意安全处处提。

三、卫生习惯

1、教室里将桌椅摆放整齐,抽屉内无杂物。地面无纸屑,教室墙壁、桌面无乱贴乱画痕迹。值日生将黑板擦净,讲台上的物品摆放整齐。

2、每个学生要养成“三要”、“四勤”、“八不”的个人卫生习惯。

“三要”:早晚要刷牙,饭前便后要洗手,饭后要漱口。

“四勤”:勤洗澡,勤理发,勤剪指甲、勤换衣。

“八不”:不喝生水,不共用茶杯,不吃零食,不挑食,不随地吐痰,不乱扔果皮纸屑,不乱倒垃圾,不吸烟。

四、总结:谈谈新学期打算,提出奋斗目标。

高中数学教案范文(精选篇7)

一、预习目标

预习《平面向量应用举例》,体会向量是一种处理几何问题、物理问题等的工具,建立实际问题与向量的联系。

二、预习内容

阅读课本内容,整理例题,结合向量的运算,解决实际的几何问题、物理问题。另外,在思考一下几个问题:

1、例1如果不用向量的方法,还有其他证明方法吗?

2、利用向量方法解决平面几何问题的“三步曲”是什么?

3、例3中,

⑴为何值时,|F1|最小,最小值是多少?

⑵|F1|能等于|G|吗?为什么?

三、提出疑惑

同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中疑惑点疑惑内容。

课内探究学案

一、学习内容

1、运用向量的有关知识(向量加减法与向量数量积的运算法则等)解决平面几何和解析几何中直线或线段的平行、垂直、相等、夹角和距离等问题。

2、运用向量的有关知识解决简单的物理问题。

二、学习过程

探究一:

(1)向量运算与几何中的结论"若,则,且所在直线平行或重合"相类比,你有什么体会?

(2)举出几个具有线性运算的几何实例。

例1、证明:平行四边形两条对角线的平方和等于四条边的平方和。

已知:平行四边形ABCD。

求证:

试用几何方法解决这个问题,利用向量的方法解决平面几何问题的“三步曲”?

(1)建立平面几何与向量的联系,

(2)通过向量运算,研究几何元素之间的关系,

(3)把运算结果“翻译”成几何关系。

例2,如图,平行四边形ABCD中,点E、F分别是AD、DC边的中点,BE、BF分别与AC交于R、T两点,你能发现AR、RT、TC之间的关系吗?

探究二:两个人提一个旅行包,夹角越大越费力。在单杠上做引体向上运动,两臂夹角越小越省力。这些力的问题是怎么回事?

例3,在日常生活中,你是否有这样的经验:两个人共提一个旅行包,夹角越大越费力;在单杠上作引体向上运动,两臂的夹角越小越省力。你能从数学的角度解释这种现象吗?

请同学们结合刚才这个问题,思考下面的问题:

⑴为何值时,|F1|最小,最小值是多少?

⑵|F1|能等于|G|吗?为什么?

例4如图,一条河的两岸平行,河的宽度m,一艘船从A处出发到河对岸。已知船的速度|v1|=10km/h,水流的速度|v2|=2km/h,问行驶航程最短时,所用的时间是多少(精确到0。1min)?

变式训练:两个粒子A、B从同一源发射出来,在某一时刻,它们的位移分别为,(1)写出此时粒子B相对粒子A的位移s;(2)计算s在方向上的投影。

三、反思总结

结合图形特点,选定正交基底,用坐标表示向量进行运算解决几何问题,体现几何问题。

代数化的特点,数形结合的数学思想体现的淋漓尽致。向量作为桥梁工具使得运算简练标致,又体现了数学的美。有关长方形、正方形、直角三角形等平行、垂直等问题常用此法。

本节主要研究了用向量知识解决平面几何问题和物理问题;掌握向量法和坐标法,以及用向量解决实际问题的步骤。

高中数学教案范文(精选篇8)

内容分析:

1、 集合是中学数学的一个重要的基本概念

在小学数学中,就渗透了集合的初步概念,到了初中,更进一步应用集合的语言表述一些问题。例如,在代数中用到的有数集、解集等;在几何中用到的有点集。至于逻辑,可以说,从开始学习数学就离不开对逻辑知识的掌握和运用,基本的逻辑知识在日常生活、学习、工作中,也是认识问题、研究问题不可缺少的工具。这些可以帮助学生认识学习本章的意义,也是本章学习的基础。

把集合的初步知识与简易逻辑知识安排在高中数学的最开始,是因为在高中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握和使用数学语言的基础

例如,下一章讲函数的概念与性质,就离不开集合与逻辑。

本节首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明

然后,介绍了集合的常用表示方法,包括列举法、描述法,还给出了画图表示集合的例子。

这节课主要学习全章的引言和集合的基本概念

学习引言是引发学生的学习兴趣,使学生认识学习本章的意义

本节课的教学重点是集合的基本概念。

集合是集合论中的原始的、不定义的概念

在开始接触集合的概念时,主要还是通过实例,对概念有一个初步认识

教科书给出的“一般地,某些指定的对象集在一起就成为一个集合,也简称集

”这句话,只是对集合概念的描述性说明。

教学过程:

一、复习引入:

1.简介数集的发展,复习最大公约数和最小公倍数,质数与和数;

2.教材中的章头引言;

3.集合论的创始人——康托尔(德国数学家)(见附录);

4.“物以类聚”,“人以群分”;

5.教材中例子(P4)。

二、讲解新课:

阅读教材第一部分,问题如下:

(1)有那些概念?是如何定义的?

(2)有那些符号?是如何表示的?

(3)集合中元素的特性是什么?

(一)集合的有关概念:由一些数、一些点、一些图形、一些整式、一些物体、一些人组成的.我们说,每一组对象的全体形成一个集合,或者说,某些指定的对象集在一起就成为一个集合,也简称集.集合中的每个对象叫做这个集合的元素.

定义:一般地,某些指定的对象集在一起就成为一个集合.

1、集合的概念

(1)集合:某些指定的对象集在一起就形成一个集合(简称集)

(2)元素:集合中每个对象叫做这个集合的元素

2、常用数集及记法

(1)非负整数集(自然数集):全体非负整数的集合,记作N,N={0,1,2,…}

(2)正整数集:非负整数集内排除0的集,记作N__或N+,N__={1,2,3,…}

(3)整数集:全体整数的集合,记作Z ,Z={0,±1,±2,…}

(4)有理数集:全体有理数的集合,记作Q,Q={整数与分数}

(5)实数集:全体实数的集合,记作R,R={数轴上所有点所对应的数}

注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0

(2)非负整数集内排除0的集,记作N__或N+

Q、Z、R等其它数集内排除0的集,也是这样表示,例如,整数集内排除0的集,表示成Z__

3、元素对于集合的隶属关系

(1)属于:如果a是集合A的元素,就说a属于A,记作a∈A

(2)不属于:如果a不是集合A的元素,就说a不属于A,记作aA

4、集合中元素的特性

(1)确定性:按照明确的判断标准给定一个元素或者在这个集合里,或者不在,不能模棱两可

(2)互异性:集合中的元素没有重复

(3)无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出)

5、⑴集合通常用大写的拉丁字母表示,如A、B、C、P、Q……

元素通常用小写的拉丁字母表示,如a、b、c、p、q……

⑵“∈”的开口方向,不能把a∈A颠倒过来写。

高中数学教案范文(精选篇9)

教学目标:

1.了解复数的几何意义,会用复平面内的点和向量来表示复数;了解复数代数形式的加、减运算的几何意义.

2.通过建立复平面上的点与复数的一一对应关系,自主探索复数加减法的几何意义.

教学重点:

复数的几何意义,复数加减法的几何意义.

教学难点:

复数加减法的几何意义.

教学过程:

一 、问题情境

我们知道,实数与数轴上的点是一一对应的,实数可以用数轴上的点来表示.那么,复数是否也能用点来表示呢?

二、学生活动

问题1 任何一个复数a+bi都可以由一个有序实数对(a,b)惟一确定,而有序实数对(a,b)与平面直角坐标系中的点是一一对应的,那么我们怎样用平面上的点来表示复数呢?

问题2 平面直角坐标系中的点A与以原点O为起点,A为终点的向量是一一对应的,那么复数能用平面向量表示吗?

问题3 任何一个实数都有绝对值,它表示数轴上与这个实数对应的点到原点的距离.任何一个向量都有模,它表示向量的长度,那么相应的,我们可以给出复数的模(绝对值)的概念吗?它又有什么几何意义呢?

问题4 复数可以用复平面的向量来表示,那么,复数的加减法有什么几何意义呢?它能像向量加减法一样,用作图的方法得到吗?两个复数差的模有什么几何意义?

三、建构数学

1.复数的几何意义:在平面直角坐标系中,以复数a+bi的实部a为横坐标,虚部b为纵坐标就确定了点Z(a,b),我们可以用点Z(a,b)来表示复数a+bi,这就是复数的几何意义.

2.复平面:建立了直角坐标系来表示复数的平面.其中x轴为实轴,y轴为虚轴.实轴上的点都表示实数,除原点外,虚轴上的点都表示纯虚数.

3.因为复平面上的点Z(a,b)与以原点O为起点、Z为终点的向量一一对应,所以我们也可以用向量来表示复数z=a+bi,这也是复数的几何意义.

4.复数加减法的几何意义可由向量加减法的平行四边形法则得到,两个复数差的模就是复平面内与这两个复数对应的两点间的距离.同时,复数加减法的法则与平面向量加减法的坐标形式也是完全一致的。

高中数学教案范文(精选篇10)

一、单元教学内容

(1)算法的基本概念

(2)算法的基本结构:顺序、条件、循环结构

(3)算法的基本语句:输入、输出、赋值、条件、循环语句

二、单元教学内容分析

算法是数学及其应用的重要组成部分,是计算科学的重要基础。随着现代信息技术飞速发展,算法在科学技术、社会发展中发挥着越来越大的作用,并日益融入社会生活的许多方面,算法思想已经成为现代人应具备的一种数学素养。需要特别指出的是,中国古代数学中蕴涵了丰富的算法思想。在本模块中,学生将在中学教育阶段初步感受算法思想的基础上,结合对具体数学实例的分析,体验程序框图在解决问题中的作用;通过模仿、操作、探索,学习设计程序框图表达解决问题的过程;体会算法的基本思想以及算法的重要性和有效性,发展有条理的思考与表达的能力,提高逻辑思维能力。

三、单元教学课时安排:

1、算法的基本概念3课时

2、程序框图与算法的基本结构5课时

3、算法的基本语句2课时

四、单元教学目标分析

1、通过对解决具体问题过程与步骤的分析体会算法的思想,了解算法的含义

2、通过模仿、操作、探索,经历通过设计程序框图表达解决问题的过程。在具体问题的解决过程中理解程序框图的三种基本逻辑结构:顺序、条件、循环结构。

3、经历将具体问题的程序框图转化为程序语句的过程,理解几种基本算法语句:输入、输出、斌值、条件、循环语句,进一步体会算法的基本思想。

4、通过阅读中国古代数学中的算法案例,体会中国古代数学对世界数学发展的贡献。

五、单元教学重点与难点分析

1、重点

(1)理解算法的含义

(2)掌握算法的基本结构

(3)会用算法语句解决简单的实际问题

2、难点

(1)程序框图

(2)变量与赋值

(3)循环结构

(4)算法设计

六、单元总体教学方法

本章教学采用启发式教学,辅以观察法、发现法、练习法、讲解法。采用这些方法的原因是学生的逻辑能力不是很强,只能通过对实例的认真领会及一定的练习才能掌握本节知识。

七、单元展开方式与特点

1、展开方式

自然语言→程序框图→算法语句

2、特点

(1)螺旋上升分层递进

(2)整合渗透前呼后应

(3)三线合一横向贯通

(4)弹性处理多样选择

八、单元教学过程分析

1、算法基本概念教学过程分析

对生活中的实际问题通过对解决具体问题过程与步骤的分析(喝茶,如二元一次方程组求解问题),体会算法的思想,了解算法的含义,能用自然语言描述算法。

2、算法的流程图教学过程分析

对生活中的实际问题通过模仿、操作、探索,经历通过设计流程图表达解决问题的过程,了解算法和程序语言的区别;在具体问题的解决过程中,理解流程图的三种基本逻辑结构:顺序、条件分支、循环,会用流程图表示算法。

3、基本算法语句教学过程分析

经历将具体生活中问题的流程图转化为程序语言的过程,理解表示的几种基本算法语句:赋值语句、输入语句、输出语句、条件语句、循环语句,进一步体会算法的基本思想。能用自然语言、流程图和基本算法语句表达算法,

4、通过阅读中国古代数学中的算法案例,体会中国古代数学对世界数学发展的贡献。

九、单元评价设想

1、重视对学生数学学习过程的评价

关注学生在数学语言的学习过程中,是否对用集合语言描述数学和现实生活中的问题充满兴趣;在学习过程中,能否体会集合语言准确、简洁的特征;是否能积极、主动地发展自己运用数学语言进行交流的能力。

2、正确评价学生的数学基础知识和基本技能

关注学生在本章(节)及今后学习中,让学生集中学习算法的初步知识,主要包括算法的基本结构、基本语句、基本思想等。算法思想将贯穿高中数学课程的相关部分,在其他相关部分还将进一步学习算法

高中数学教案范文(精选篇11)

一、目标

1、知识与技能

(1)理解流程图的顺序结构和选择结构。

(2)能用字语言表示算法,并能将算法用顺序结构和选择结构表示简单的流程图

2、过程与方法

学生通过模仿、操作、探索、经历设计流程图表达解决问题的过程,理解流程图的结构。

3、情感、态度与价值观

学生通过动手作图,用自然语言表示算法,用图表示算法。进一步体会算法的基本思想——程序化思想,在归纳概括中培养学生的逻辑思维能力。

二、重点、难点

重点:算法的顺序结构与选择结构。

难点:用含有选择结构的流程图表示算法。

三、学法与教学用具

学法:学生通过动手作图,用自然语言表示算法,用图表示算法,体会到用流程图表示算法,简洁、清晰、直观、便于检查,经历设计流程图表达解决问题的过程。进而学习顺序结构和选择结构表示简单的流程图。

教学用具:尺规作图工具,多媒体。

四、教学思路

(一)、问题引入揭示题

例1尺规作图,确定线段的一个5等分点。

要求:同桌一人作图,一人写算法,并请学生说出答案。

提问:用字语言写出算法有何感受?

引导学生体验到:显得冗长,不方便、不简洁。

教师说明:为了使算法的表述简洁、清晰、直观、便于检查,我们今天学习用一些通用图型符号构成一张图即流程图表示算法。

本节要学习的是顺序结构与选择结构。

右图即是同流程图表示的算法。

(二)、观察类比理解题

1、投影介绍流程图的符号、名称及功能说明。

符号符号名称功能说明

终端框算法开始与结束

处理框算法的各种处理操作

判断框算法的各种转移

输入输出框输入输出操作

指向线指向另一操作

2、讲授顺序结构及选择结构的概念及流程图

(1)顺序结构

依照步骤依次执行的一个算法

流程图:

(2)选择结构

对条进行判断决定后面的步骤的结构

流程图:

3、用自然语言表示算法与用流程图表示算法的比较

(1)半径为r的圆的面积公式当r=10时写出计算圆的面积的算法,并画出流程图。

解:

算法(自然语言)

①把10赋与r

②用公式求s

③输出s

流程图

(2)已知函数对于每输入一个X值都得到相应的函数值,写出算法并画流程图。

算法:(语言表示)

①输入X值

②判断X的范围,若,用函数Y=x+1求函数值;否则用Y=2-x求函数值

③输出Y的值

流程图

小结:含有数学中需要分类讨论的或与分段函数有关的问题,均要用到选择结构。

学生观察、类比、说出流程图与自然语言对比有何特点?(直观、清楚、便于检查和交流)

(三)模仿操作经历题

1、用流程图表示确定线段AB的一个16等分点

2、分析讲解例2;

分析:

思考:有多少个选择结构?相应的流程图应如何表示?

流程图:

(四)归纳小结巩固题

1、顺序结构和选择结构的模式是怎样的?

2、怎样用流程图表示算法。

(五)练习P992

(六)作业P991

高中数学教案范文(精选篇12)

一、教学内容分析

圆锥曲线的定义反映了圆锥曲线的本质属性,它是无数次实践后的高度抽象,恰当地利用定义解题,许多时候能以简驭繁。因此,在学习了椭圆、双曲线、抛物线的定义及标准方程、几何性质后,再一次强调定义,学会利用圆锥曲线定义来熟练的解题”。

二、学生学习情况分析

我所任教班级的学生参与课堂教学活动的积极性强,思维活跃,但计算能力较差,推理能力较弱,使用数学语言的表达能力也略显不足。

三、设计思想

由于这部分知识较为抽象,如果离开感性认识,容易使学生陷入困境,降低学习热情。在教学时,借助多媒体动画,引导学生主动发现问题、解决问题,主动参与教学,在轻松愉快的环境中发现、获取新知,提高教学效率。

四、教学目标

1、深刻理解并熟练掌握圆锥曲线的定义,能灵活应用定义解决问题;熟练掌握焦点坐标、顶点坐标、焦距、离心率、准线方程、渐近线、焦半径等概念和求法;能结合平面几何的基本知识求解圆锥曲线的方程。

2、通过对练习,强化对圆锥曲线定义的理解,提高分析、解决问题的能力;通过对问题的不断引申,精心设问,引导学生学习解题的一般方法。

3、借助多媒体辅助教学,激发学习数学的兴趣。

五、教学重点与难点:

教学重点

1、对圆锥曲线定义的理解

2、利用圆锥曲线的定义求“最值”

3、“定义法”求轨迹方程

教学难点:

巧用圆锥曲线定义解题

六、教学过程设计

【设计思路】

(一)开门见山,提出问题

一上课,我就直截了当地给出例题1:

(1)已知A(-2,0),B(2,0)动点M满足|MA|+|MB|=2,则点M的轨迹是()。

(A)椭圆(B)双曲线(C)线段(D)不存在

(2)已知动点M(x,y)满足(x1)2(y2)2|3x4y|,则点M的轨迹是()。

(A)椭圆(B)双曲线(C)抛物线(D)两条相交直线

【设计意图】

定义是揭示概念内涵的逻辑方法,熟悉不同概念的不同定义方式,是学习和研究数学的一个必备条件,而通过一个阶段的学习之后,学生们对圆锥曲线的定义已有了一定的认识,他们是否能真正掌握它们的本质,是我本节课首先要弄清楚的问题。

为了加深学生对圆锥曲线定义理解,我以圆锥曲线的定义的运用为主线,精心准备了两道练习题。

【学情预设】

估计多数学生能够很快回答出正确答案,但是部分学生对于圆锥曲线的定义可能并未真正理解,因此,在学生们回答后,我将要求学生接着说出:若想答案是其他选项的话,条件要怎么改?这对于已学完圆锥曲线这部分知识的学生来说,并不是什么难事。但问题(2)就可能让学生们费一番周折——如果有学生提出:可以利用变形来解决问题,那么我就可以循着他的思路,先对原等式做变形:(x1)2(y2)25

这样,很快就能得出正确结果。如若不然,我将启发他们从等式两端的式子|3x4y|5入手,考虑通过适当的变形,转化为学生们熟知的两个距离公式。

在对学生们的解答做出判断后,我将把问题引申为:该双曲线的中心坐标是,实轴长为,焦距为。以深化对概念的理解。

(二)理解定义、解决问题

例2:

(1)已知动圆A过定圆B:x2y26x70的圆心,且与定圆C:xy6x910相内切,求△ABC面积的最大值。

(2)在(1)的条件下,给定点P(-2,2),求|PA|

【设计意图】

运用圆锥曲线定义中的数量关系进行转化,使问题化归为几何中求最大(小)值的模式,是解析几何问题中的一种常见题型,也是学生们比较容易混淆的一类问题。例2的设置就是为了方便学生的辨析。

【学情预设】

根据以往的经验,多数学生看上去都能顺利解答本题,但真正能完整解答的可能并不多。事实上,解决本题的关键在于能准确写出点A的轨迹,有了练习题1的铺垫,这个问题对学生们来讲就显得颇为简单,因此面对例2(1),多数学生应该能准确给出解答,但是对于例2(2)这样相对比较陌生的问题,学生就无从下手。我提醒学生把3/5和离心率联系起来,这样就容易和第二定义联系起来,从而找到解决本题的突破口。

(三)自主探究、深化认识

如果时间允许,练习题将为学生们提供一次数学猜想、试验的机会。

练习:

设点Q是圆C:(x1)2225|AB|的最小值。3y225上动点,点A(1,0)是圆内一点,AQ的垂直平分线与CQ交于点M,求点M的轨迹方程。

引申:若将点A移到圆C外,点M的轨迹会是什么?

【设计意图】练习题设置的目的是为学生课外自主探究学习提供平台,当然,如果课堂上时间允许的话,

可借助“多媒体课件”,引导学生对自己的结论进行验证。

【知识链接】

(一)圆锥曲线的定义

1、圆锥曲线的第一定义

2、圆锥曲线的统一定义

(二)圆锥曲线定义的应用举例

1、双曲线1的两焦点为F1、F2,P为曲线上一点,若P到左焦点F1的距离为12,求P到右准线的距离。

2、|PF1||PF2|2P为等轴双曲线x2y2a2上一点,F1、F2为两焦点,O为双曲线的中心,求的|PO|取值范围。

3、在抛物线y22px上有一点A(4,m),A点到抛物线的焦点F的距离为5,求抛物线的方程和点A的坐标。

4、例题:

(1)已知点F是椭圆1的右焦点,M是这椭圆上的动点,A(2,2)是一个定点,求|MA|+|MF|的最小值。

(2)已知A(,3)为一定点,F为双曲线1的右焦点,M在双曲线右支上移动,当|AM||MF|最小时,求M点的坐标。

(3)已知点P(-2,3)及焦点为F的抛物线y,在抛物线上求一点M,使|PM|+|FM|最小。

5、已知A(4,0),B(2,2)是椭圆1内的点,M是椭圆上的动点,求|MA|+|MB|的最小值与最大值。

七、教学反思

1、本课将借助于,将使全体学生参与活动成为可能,使原来令人难以理解的抽象的数学理论变得形象,生动且通俗易懂,同时,运用“多媒体课件”辅助教学,节省了板演的时间,从而给学生留出更多的时间自悟、自练、自查,充分发挥学生的主体作用,这充分显示出“多媒体课件”与探究合作式教学理念的有机结合的教学优势。

2、利用两个例题及其引申,通过一题多变,层层深入的探索,以及对猜测结果的检测研究,培养学生思维能力,使学生从学会一个问题的求解到掌握一类问题的解决方法,循序渐进的让学生把握这类问题的解法;将学生容易混淆的两类求“最值问题”并为一道题,方便学生进行比较、分析。虽然从表面上看,我这一堂课的教学容量不大,但事实上,学生们的思维运动量并不会小。

总之,如何更好地选择符合学生具体情况,满足教学目标的例题与练习、灵活把握课堂教学节奏仍是我今后工作中的一个重要研究课题,而要能真正进行素质教育,培养学生的创新意识,自己首先必须更新观念——在教学中适度使用多媒体技术,让学生有参与教学实践的机会,能够使学生在学习新知识的同时,激发起求知的欲望,在寻求解决问题的办法的过程中获得自信和成功的体验,于不知不觉中改善了他们的思维品质,提高了数学思维能力。

高中数学教案范文(精选篇13)

说课内容:普通高中课程标准实验教科书(人教A版)《数学必修4》第二章第四节“平面向量的数量积”的第一课时---平面向量数量积的物理背景及其含义。

下面,我从背景分析、教学目标设计、课堂结构设计、教学过程设计、教学媒体设计及教学评价设计六个方面对本节课的思考进行说明。

一、 背景分析

1、学习任务分析

平面向量的数量积是继向量的线性运算之后的又一重要运算,也是高中数学的一个重要概念,在数学、物理等学科中应用十分广泛。本节内容教材共安排两课时,其中第一课时主要研究数量积的概念,第二课时主要研究数量积的坐标运算,本节课是第一课时。

本节课的主要学习任务是通过物理中“功”的事例抽象出平面向量数量积的概念,在此基础上探究数量积的性质与运算律,使学生体会类比的思想方法,进一步培养学生的抽象概括和推理论证的能力。其中数量积的概念既是对物理背景的抽象,又是研究性质和运算律的基础。同时也因为在这个概念中,既有长度又有角度,既有形又有数,是代数、几何与三角的最佳结合点,不仅应用广泛,而且很好的体现了数形结合的数学思想,使得数量积的概念成为本节课的核心概念,自然也是本节课教学的重点。

2、学生情况分析

学生在学习本节内容之前,已熟知了实数的运算体系,掌握了向量的概念及其线性运算,具备了功等物理知识,并且初步体会了研究向量运算的一般方法:即先由特殊模型(主要是物理模型)抽象出概念,然后再从概念出发,在与实数运算类比的基础上研究性质和运算律。这为学生学习数量积做了很好的铺垫,使学生倍感亲切。但也正是这些干扰了学生对数量积概念的理解,一方面,相对于线性运算而言,数量积的结果发生了本质的变化,两个有形有数的向量经过数量积运算后,形却消失了,学生对这一点是很难接受的;另一方面,由于受实数乘法运算的影响,也会造成学生对数量积理解上的偏差,特别是对性质和运算律的理解。因而本节课教学的难点数量积的概念。

二、 教学目标设计

《普通高中数学课程标准(实验)》 对本节课的要求有以下三条:

(1)通过物理中“功”等事例,理解平面向量数量积的含义及其物理意义。

(2)体会平面向量的数量积与向量投影的关系。

(3)能用运数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系。

从以上的背景分析可以看出,数量积的概念既是本节课的重点,也是难点。为了突破这一难点,首先无论是在概念的引入还是应用过程中,物理中“功”的实例都发挥了重要作用。其次,作为数量积概念延伸的性质和运算律,不仅能够使学生更加全面深刻地理解概念,同时也是进行相关计算和判断的理论依据。最后,无论是数量积的性质还是运算律,都希望学生在类比的基础上,通过主动探究来发现,因而对培养学生的抽象概括能力、推理论证能力和类比思想都无疑是很好的载体。

综上所述,结合“课标”要求和学生实际,我将本节课的教学目标定为:

1、了解平面向量数量积的物理背景,理解数量积的含义及其物理意义;

2、体会平面向量的数量积与向量投影的关系,掌握数量积的性质和运算律,

并能运用性质和运算律进行相关的运算和判断;

3、体会类比的数学思想和方法,进一步培养学生抽象概括、推理论证的能力。

三、课堂结构设计

本节课从总体上讲是一节概念教学,依据数学课程改革应关注知识的发生和发展过程的理念,结合本节课的知识的逻辑关系,我按照以下顺序安排本节课的教学:

即先从数学和物理两个角度创设问题情景,通过归纳和抽象得到数量积的概念,在此基础上研究数量积的性质和运算律,使学生进一步加深对概念的理解,然后通过例题和练习使学生巩固概念,加深印象,最后通过课堂小结提高学生认识,形成知识体系。

四、 教学媒体设计

和“大纲”教材相比,“课标”教材在本节课的内容安排上,虽然将向量的夹角在“平面向量基本定理”一节提前做了介绍,但却将原来分两节课完成的内容合并成一节,相比较而言本节课的教学任务加重了许多。为了保证教学任务的完成,顺利实现本节课的教学目标,考虑到本节课的实际特点,在教学媒体的使用上,我的设想主要有以下两点:

1、制作高效实用的电脑多媒体课件,主要作用是改变相关内容的呈现方式,以此来节约课时,增加课堂容量。

2、设计科学合理的板书(见下),一方面使学生加深对主要知识的印象,另一方面使学生清楚本节内容知识间的逻辑关系,形成知识网络。

平面向量数量积的物理背景及其含义

一、 数量积的概念 二、数量积的性质 四、应用与提高

1、 概念: 例1:

2、 概念强调 (1)记法 例2:

(2)“规定” 三、数量积的运算律 例3:

3、几何意义:

4、物理意义:

五、 教学过程设计

课标指出:数学教学过程是教师引导学生进行学习活动的过程,是教师和学生间互动的过程,是师生共同发展的过程。为有序、有效地进行教学,本节课我主要安排以下六个活动:

活动一:创设问题情景,激发学习兴趣

正如教材主编寄语所言,数学是自然的,而不是强加于人的。平面向量的数量积这一重要概念,和向量的线性运算一样,也有其数学背景和物理背景,为了体现这一点,我设计以下几个问题:

问题1:我们已经研究了向量的哪些运算?这些运算的结果是什么?

问题2:我们是怎么引入向量的加法运算的?我们又是按照怎样的顺序研究了这种运算的?

期望学生回答:物理模型→概念→性质→运算律→应用

问题3:如图所示,一物体在力F的作用下产生位移S,

(1)力F所做的功W= 。

(2)请同学们分析这个公式的特点:

W(功)是 量,

F(力)是 量,

S(位移)是 量,

α是 。

问题1的设计意图在于使学生了解数量积的数学背景,让学生明白本节课所要研究的数量积与向量的加法、减法及数乘一样,都是向量的运算,但与向量的线性运算相比,数量积运算又有其特殊性,那就是其结果发生了本质的变化。

问题2的设计意图在于使学生在与向量加法类比的基础上明了本节课的研究方法和顺序,为教学活动指明方向。

问题3的设计意图在于使学生了解数量积的物理背景,让学生知道,我们研究数量积绝不仅仅是为了数学自身的完善,而是有其客观背景和现实意义的,从而产生了进一步研究这种新运算的愿望。同时,也为抽象数量积的概念做好铺垫。

活动二:探究数量积的概念

1、概念的抽象

在分析“功”的计算公式的基础上提出问题4

问题4:你能用文字语言来表述功的计算公式吗?如果我们将公式中的力与位移推广到一般向量,其结果又该如何表述?

学生通过思考不难回答:功是力与位移的大小及其夹角余弦的乘积;两个向量的大小及其夹角余弦的乘积。这样,学生事实上已经得到数量积概念的文字表述了,在此基础上,我进一步明晰数量积的概念。

2、概念的明晰

已知两个非零向量

,它们的夹角为

,我们把数量 ︱

︱·︱

︱cos

叫做

的数量积(或内积),记作:

·

,即:

·

= ︱

︱·︱

︱cos

在强调记法和“规定”后 ,为了让学生进一步认识这一概念,提出问题5

问题5:向量的数量积运算与线性运算的结果有什么不同?影响数量积大小的因素有哪些?并完成下表:

的范围0°≤

<90°

=90°0°<

≤180°

·

的符号

通过此环节不仅使学生认识到数量积的结果与线性运算的结果有着本质的不同,而且认识到向量的夹角是决定数量积结果的重要因素,为下面更好地理解数量积的性质和运算律做好铺垫。

3、探究数量积的几何意义

这个问题教材是这样安排的:在给出向量数量积的概念后,只介绍了向量投影的定义,直到讲完例1后,为了证明运算律的第三条才直接以结论的形式呈现给学生,我觉得这样安排似乎不太自然,还不如在给出向量投影的概念后,直接由学生自己归纳得出,所以做了调整。为此,我首先给出给出向量投影的概念,然后提出问题5。

如图,我们把│

│cos

(│

│cos

)叫做向量

方向上(

方向上)的投影,记做:OB1=│

│cos

问题6:数量积的几何意义是什么?

这样做不仅让学生从“形”的角度重新认识数量积的概念,从中体会数量积与向量投影的关系,同时也更符合知识的连贯性,而且也节约了课时。

4、研究数量积的物理意义

数量积的概念是由物理中功的概念引出的,学习了数量积的概念后,学生就会明白功的数学本质就是力与位移的数量积。为此,我设计以下问题 一方面使学生尝试计算数量积,另一方面使学生理解数量积的物理意义,同时也为数量积的性质埋下伏笔。

问题7:

(1) 请同学们用一句话来概括功的数学本质:功是力与位移的数量积 。

(2)尝试练习:一物体质量是10千克,分别做以下运动:

①、在水平面上位移为10米;

②、竖直下降10米;

③、竖直向上提升10米;

④、沿倾角为30度的斜面向上运动10米;

分别求重力做的功。

活动三:探究数量积的运算性质

1、性质的发现

教材中关于数量积的三条性质是以探究的形式出现的,为了很好地完成这一探究活动,在完成上述练习后,我不失时机地提出问题8:

(1)将尝试练习中的① ② ③的结论推广到一般向量,你能得到哪些结论?

(2)比较︱

·

︱与︱

︱×︱

︱的大小,你有什么结论?

在学生讨论交流的基础上,教师进一步明晰数量积的性质,然后再由学生利用数量积的定义给予证明,完成探究活动。

2、明晰数量积的性质

3、性质的证明

这样设计体现了教师只是教学活动的引领者,而学生才是学习活动的主体,让学生成为学习的研究者,不断地体验到成功的喜悦,激发学生参与学习活动的热情,不仅使学生获得了知识,更培养了学生由特殊到一般的思维品质。

活动四:探究数量积的运算律

1、运算律的发现

关于运算律,教材仍然是以探究的形式出现,为此,首先提出问题9

问题9:我们学过了实数乘法的哪些运算律?这些运算律对向量是否也适用?

通过此问题主要是想使学生在类比的基础上,猜测提出数量积的运算律。

学生可能会提出以下猜测: ①

·

=

·

②(

·

)

=

(

·

) ③(

+

=

·

+

·

猜测①的正确性是显而易见的。

关于猜测②的正确性,我提示学生思考下面的问题:

猜测②的左右两边的结果各是什么?它们一定相等吗?

学生通过讨论不难发现,猜测②是不正确的。

这时教师在肯定猜测③的基础上明晰数量积的运算律:

2、明晰数量积的运算律

3、证明运算律

学生独立证明运算律(2)

我把运算运算律(2)的证明交给学生完成,在证明时,学生可能只考虑到λ>0的情况,为了帮助学生完善证明,提出以下问题:

当λ<0时,向量

与λ

与λ

的方向 的关系如何?此时,向量λ

与λ

的夹角与向量

的夹角相等吗?

师生共同证明运算律(3)

运算律(3)的证明对学生来说是比较困难的,为了节约课时,这个证明由师生共同完成,我想这也是教材的本意。

在这个环节中,我仍然是首先为学生创设情景,让学生在类比的基础上进行猜想归纳,然后教师明晰结论,最后再完成证明,这样做不仅培养了学生推理论证的能力,同时也增强了学生类比创新的意识,将知识的获得和能力的培养有机的结合在一起。

活动五:应用与提高

例1、(师生共同完成)已知︱

︱=6,︱

︱=4,

的夹角为60°,求

(

+2

)·(

-3

),并思考此运算过程类似于哪种运算?

例2、(学生独立完成)对任意向量

,b是否有以下结论:

(1)(

+

)2=

2+2

·

+

2

(2)(

+

)·(

-

)=

2—

2

例3、(师生共同完成)已知︱

︱=3,︱

︱=4, 且

不共线,k为何值时,向量

+k

-k

互相垂直?并思考:通过本题你有什么收获?

本节教材共安排了四道例题,我根据学生实际选择了其中的三道,并对例1和例3增加了题后反思。例1是数量积的性质和运算律的综合应用,教学时,我重点从对运算原理的分析和运算过程的规范书写两个方面加强示范。完成计算后,进一步提出问题:此运算过程类似于哪种运算?目的是想让学生在类比多项式乘法的基础上自己猜测提出例2给出的.两个公式,再由学生独立完成证明,一方面这并不困难,另一方面培养了学生通过类比这一思维模式达到创新的目的。例3的主要作用是,在继续巩固性质和运算律的同时,教给学生如何利用数量积来判断两个向量的垂直,是平面向量数量积的基本应用之一,教学时重点给学生分析数与形的转化原理。

为了使学生更好的理解数量积的含义,熟练掌握性质及运算律,并能够应用数量积解决有关问题,再安排如下练习:

1、 下列两个命题正确吗?为什么?

①、若

≠0,则对任一非零向量

,有

·

≠0.

②、若

≠0,

·

=

·

,则

=

.

2、已知△ABC中,

=

,

=

,当

·

<0或

·

=0时,试判断△ABC的形状。

安排练习1的主要目的是,使学生在与实数乘法比较的基础上全面认识数量积这一重要运算,

通过练习2使学生学会用数量积表示两个向量的夹角,进一步感受数量积的应用价值。

活动六:小结提升与作业布置

1、本节课我们学习的主要内容是什么?

2、平面向量数量积的两个基本应用是什么?

3、我们是按照怎样的思维模式进行概念的归纳和性质的探究?在运算律的探究过程中,渗透了哪些数学思想?

4、类比向量的线性运算,我们还应该怎样研究数量积?

通过上述问题,使学生不仅对本节课的知识、技能及方法有了更加全面深刻的认识,同时也为下

一节做好铺垫,继续激发学生的求知欲。

布置作业:

1、课本P121习题2.4A组1、2、3。

2、拓展与提高:

已知

都是非零向量,且

+3

与7

-5

垂直,

-4

与 7

-2

垂直求

的夹角。

在这个环节中,我首先考虑检测全体学生是否都达到了“课标”的基本要求,因此安排了一组教材中的习题,目的是让所有的学生继续加深对数量积概念的理解和应用,为后续学习打好基础。其次,为了能让不同的学生在数学领域得到不同的发展,我又安排了一道有一定难度的问题供学有余力的同学选做。

六、教学评价设计

评价方式的转变是新课程改革的一大亮点,课标指出:相对于结果,过程更能反映每个学生的发展变化,体现出学生成长的历程。因此,数学学习的评价既要重视结果,也要重视过程。结合“课标”对数学学习的评价建议,对本节课的教学我主要通过以下几种方式进行:

1、 通过与学生的问答交流,发现其思维过程,在鼓励的基础上,纠正偏差,并对其进行定

性的评价。

2、在学生讨论、交流、协作时,教师通过观察,就个别或整体参与活动的态度和表现做出评价,以此来调动学生参与活动的积极性。

3、 通过练习来检验学生学习的效果,并在讲评中,肯定优点,指出不足。

4、 通过作业,反馈信息,再次对本节课做出评价,以便查漏补缺。

高中数学教案范文(精选篇14)

一.说教材

1.本节课主要内容是线性规划的意义以及线性约束条件、线性目标函数、可行域、可行解、最优解等概念,根据约束条件建立线性目标函数。应用线性规划的图解法解决一些实际问题。

2.地位作用:线性规划是数学规划中理论较完整、方法较成熟、应用较广泛的一个分支,它可以解决科学研究、工程设计、经济管理等许多方面的实际问题。简单的线性规划是在学习了直线方程的基础上,介绍直线方程的一个简单应用。通过这部分内容的学习,使学生进一步了解数学在解决实际问题中的应用,以培养学生学习数学的兴趣、应用数学的意识和解决实际问题的能力。

3.教学目标

(1)知识与技能:了解线性规划的意义以及线性约束条件、线性目标函数、可行域、可行解、最优解等概念,能根据约束条件建立线性目标函数。

了解并初步应用线性规划的图解法解决一些实际问题。

(2)过程与方法:提高学生数学地提出、分析和解决问题的能力,发展学生数学应用意识,力求对现实世界中蕴含的一些数学模式进行思考和作出判断。

(3)情感、态度与价值观:体会数形结合、等价转化等数学思想,逐步认识数学的应用价值,提高学习数学的兴趣,树立学好数学的自信心。

4.重点与难点

重点:理解和用好图解法

难点:如何用图解法寻找线性规划的最优解。

二.说教学方法

教学过程是教师和学生共同参与的过程,启发学生自主性学习,充分调动学生的积极性、主动性;有效地渗透数学思想方法,提高学生素质。根据这样的原则和所要完成的教学目标,并为激发学生的学习兴趣,我采用如下的教学方法:

(1)启发引导学生思考、分析、实验、探索、归纳。这能充分调动学生的主动性和积极性。

(2)采用“从特殊到一般”、“化抽象为具体”、“化静为动”的方法。这有利于学生对知识进行主动建构;有利于突出重点、解决难点;也有利于发挥学生的创造性。

(3)体现“等价转化”、“数形结合”的思想方法。这样可发挥学生的主观能动性,有利于提高学生的各种能力。

三.说学法指导

教给学生方法比教给学生知识更重要,本节课注重调动学生积极思考、主动探索,尽可能地增加学生参与教学活动的时间和空间,我进行了以下学法指导:观察分析、联想转化、动手实验、练习巩固。

(1)观察分析:通过引例让学生观察化旧知为新知,造成学生认知冲突。

(2)联想转化:学生通过分析、探索、得出解决问题的方法。

(3)动手实验:通过作图、实验、从而得出一般解题步骤。

(4)练习巩固:让学生知道数学重在运用,从而检验知识的应用情况,找出未掌握的内容及其差距。

四.说教学程序

1、导入课题: 由一个不等式组表示平面区域转化为在此平面区域内一二元一次数的最值问题,造成学生认知冲突。

3、导学达标之一:创设情境、形成概念

通过引例的问题让学生探索解决新问题的方法。

(设计意图:利用已经学过的知识逐步分析,学以致用,使学生经历数学知识的形成过程,从而提高学生数学的地提出、分析和解决问题的能力。)

然后老师逐步引导,动手实验,化抽象为直观。从而得到解决此类问题的方法,并对比引例给出相关概念:线性约束条件、目标函数、线性目标函数、线性规划、可行解、可行域、最优解。并能根据引例提炼线性规划问题的解法——图解法。

(设计意图:引导学生观察和分析问题,激发学生的探索欲望,从而培养学生的解决问题和总结归纳的能力。)

4.导学达标之二:针对问题、举例讲解、形成技能

例一:课本61页例3

(创设意境:,练习是使学生明白数学来源于实际又运用于实际,同时使学生进初步应用线性规划的图解法解决一些实际问题。)

6.巩固目标:

练习一:学生做课堂练习P64例4

(叫学生提出解决问题的方法,并用多媒体展示,并根据问题的实际意义,考虑取值范围。造成新的认知冲突,从而研究探索,得到整点最优解的一种求法。)

练习二:为了赚大钱,老张最近承包了一家具厂,可老张却闷闷不乐,原来家具厂有方木料90m3,五合板600m2,老张准备加工成书桌和书厨出售,他通过调查了解到:生产每张书桌需要方木料0.1m3、五合板2m2,生产每个书橱需要方木料0.2m3、五合板1m2,出售一张书桌可获利润80元,出售一个书橱可获利润120元。老张却不知如何安排?(电脑显示问题)

(设计意图:通过实际问题,激发学生兴趣,培养学生的数学应用意识,力求学生能够对现实生活中蕴含的一些数学模式进行思考和作出判断。)

7.归纳与小结:

小结本课的主要学习内容是什么?(由师生共同来完成本课小结)

(创设意境:让学生参与小结,引导学生对所学知识进行反思,有利于加强学生记忆和形成良好的数学思维习惯)

8.布置作业:

P64. 2

五.说板书设计

板书设计为表格式,这样的板书简明清楚,重点突出,加深学生对重点知识的理解和掌握,同时便于记忆,有利于提高教学效果。

高中数学教案范文(精选篇15)

高中数学第三册(选修)Ⅱ第一章第2节第一课时

一、教材分析

教材的地位和作用

期望是概率论和数理统计的重要概念之一,是反映随机变量取值分布的特征数,学习期望将为今后学习概率统计知识做铺垫。同时,它在市场预测,经济统计,风险与决策等领域有着广泛的应用,为今后学习数学及相关学科产生深远的影响。

教学重点与难点

重点:离散型随机变量期望的概念及其实际含义。

难点:离散型随机变量期望的实际应用。

[理论依据]本课是一节概念新授课,而概念本身具有一定的抽象性,学生难以理解,因此把对离散性随机变量期望的概念的教学作为本节课的教学重点。此外,学生初次应用概念解决实际问题也较为困难,故把其作为本节课的教学难点。

二、教学目标

[知识与技能目标]

通过实例,让学生理解离散型随机变量期望的概念,了解其实际含义。

会计算简单的离散型随机变量的期望,并解决一些实际问题。

[过程与方法目标]

经历概念的建构这一过程,让学生进一步体会从特殊到一般的思想,培养学生归纳、概括等合情推理能力。

通过实际应用,培养学生把实际问题抽象成数学问题的能力和学以致用的数学应用意识。

[情感与态度目标]

通过创设情境激发学生学习数学的情感,培养其严谨治学的态度。在学生分析问题、解决问题的过程中培养其积极探索的精神,从而实现自我的价值。

三、教法选择

引导发现法

四、学法指导

“授之以鱼,不如授之以渔”,注重发挥学生的主体性,让学生在学习中学会怎样发现问题、分析问题、解决问题。

五、教学的基本流程设计

高中数学第三册《离散型随机变量的期望》说课教案.rar

成语首拼