六年级数学比的教案(15篇)
教案能够帮助教师提前预测学生可能遇到的问题,并做好解决方案。下面是小编为大家整理的六年级数学比的教案,如果大家喜欢可以分享给身边的朋友。
数乘法应用题的结构特征及解法和方程知识的基础上进行学习的,在设计上有以下几个特点:
1.抓住解题关键。
教学中,选择解决问题所需的条件,抓住关键句,找准单位“1”,找准比较量及比较量对应单位“1”的几分之几,为画图分析做好准备。
2.直观分析问题。
教学中,把题中的已知条件和所求问题直观、形象地用线段图表示出来,并结合图示找出题中的等量关系。
3.顺向思考列式。
教学中,根据题中的等量关系,顺向思考,设未知量(单位“1”)为x,列方程解决问题。
4.明确解题规律。
教学中,引导学生通过分析、比较,找出分数乘、除法应用题的区别和联系,总结出解决分数应用题的一般规律,弄清当单位“1”的量未知时,可以用方程或算术方法解答这类实际问题。
课前准备
教师准备 PPT课件
学生准备 直尺
教学过程
复习铺垫
1.找出单位“1”并说出数量关系。
(1)已经行了全程的。(把全程看作单位“1”,全程×=已行路程)
(2)一个长方形,宽是长的。(把长看作单位“1”,长×=宽)
2.按要求解答。
课件出示:小明的体重是35kg,体内的水分占体重的,小明体内的水分是多少千克?
(1)读题,找出单位“1”及数量关系。
(把小明的体重看作单位“1”,小明体内水分的质量=小明的体重×)
(2)结合数量关系式,明确本题结构特征。(引导学生回答哪部分是已知的,哪部分是未知的)
(3)小组合作,列式解答。(结合学生的回答,引导学生归纳出此类题的解法:单位“1”已知,求它的几分之几是多少,用乘法计算)
35×=28(kg)
3.谈话导入。
分数乘法应用题的结构特征及解法我们已经掌握了,今天我们就来学习新知识,学习用方程法和算术法解决分数除法应用题。(板书课题)
设计意图:通过找单位“1”,说出数量关系,解答“求一个数的几分之几是多少”的乘法应用题,复习分数乘法应用题的结构特征及解题方法,为学习新知做准备。
探究新知
(一)“已知一个数的几分之几是多少,求这个数”的实际问题的解法。
1.课件出示教材37页例4。
(1)读题,交流信息。
根据测定,成人体内的水分约占体重的,儿童体内的水分约占体重的,小明体内有28kg水分。
(2)找出信息中存在的数量关系。(让学生分组分析、讨论、汇报,结合学生的回答,课件展示)
①成人体重×=成人体内水分的质量
②儿童体重×=儿童体内水分的质量
③小明的体重×=小明体内水分的质量
2.探究解决问题的方法。
(1)课件出示例4的问题。
小明的体重是多少千克?
(2)解决问题。
①解决例4需要哪些条件?把谁看作单位“1”?
②画图分析。
本单元在分数四则计算和简单应用的基础上,主要教学分数四则混合运算和稍复杂的求一个数的几分之几是多少的实际问题。这部分内容是五年级教学的分数知识的综合、提高和总结,对掌握和应用分数知识有很大的影响。在内容的编排上有以下几个特点。
第一,教学计算,例题的内容容量很大。例1教学分数四则混合运算,包括按运算顺序计算和应用运算律简便计算。在这道例题中,既要把整数四则混合运算的运算顺序迁移过来,还要理解整数的运算律在分数中同样适用。把按运算顺序计算和应用运算律简便计算有机结合起来,把口算和笔算结合起来,组建四则混合运算的认知结构,有益于理解和掌握计算知识,形成实实在在的计算能力。
第二,教学解决实际问题,例题的编排细致。本单元解答稍复杂的求一个数的几分之几是多少的实际问题,一般列综合式计算。提出这个要求有两点原因:首先是前面刚教学了四则混合运算,学生具备列综合算式的能力。更重要的是,六年级(下册)列方程解答稍复杂的百分数应用题,要以现在的综合算式的数量关系为依托。
教材里稍复杂的求一个数的几分之几是多少的实际问题都是两步计算的问题,这些实际问题的数量关系是教学重点,也是难点。为此,编排了两道例题。例2及练一练都是先求总数的几分之几是多少,再求总数的另一部分是多少。例3及练一练都是先求一个数的几分之几是多少,再求比这个数多(少)几的数是多少。两道例题循序渐进地引导学生把第三单元里学到的求一个数的几分之几是多少这个数量关系与实际生活中的其他数量关系联系起来,提高解决实际问题的能力。
第三,不教学稍复杂的分数除法问题。传统教材教学分数乘法应用题之后还教学分数除法应用题,而且把除法应用题与乘法应用题对称编排。本单元只编排分数乘法问题,不教学除法问题,要突出稍复杂的求一个数的几分之几是多少的问题的数量关系。因为分数乘法问题在日常生活中比较常见,它的数量关系、解题思路能迁移到稍复杂的百分数问题中去。
一、 一题两解既含运算顺序,又含运算律的内容。
例1求做两种中国结一共用的彩绳数量,由于这个实际问题具有特殊性(两种中国结的个数相同,两种中国结每个用彩绳的米数不同),所以它有不同的解法。教材充分利用这一特殊性,让学生按不同的思路列综合算式解答,能有两个收获:第一个收获是体会分数四则混合运算的运算顺序。算式2/518+3/518的思路是,先分别求出两种中国结各用彩绳多少米,因此列出的算式要先算乘法。算式(2/5+3/5)18的思路是,先求出两种中国结各做一个要用彩绳的米数,这正是在算式里加括号的目的。所以,计算有括号的算式,要先算括号里面的。类似上面的那些体会,在教学整数四则混合运算时曾经有过。教学分数四则混合运算,再次体会运算顺序的合理性、必要性和可操作性是认知的需要。而且,获得这些体会并不困难。第二个收获是两种解法的结果相同,不但相互印证解答正确,还为理解运算律创造了具体的背景。
在教学运算顺序时还要注意两点: 一是让学生看着列出并计算的两道综合算式,说说分数四则混合运算的运算顺序,使解决实际问题得到的体会成为十分清楚的数学知识;二是引导学生回忆整数四则混合运算顺序,并和分数四则混合运算顺序相比较,看到两者的相同,使它们和谐结合,从而对运算顺序形成更具概括性的认识。
比较两种解法之间的联系是感受运算律的存在,比较哪种方法简便是引导简便运算。需要说明的是,第三单元计算分数连乘,把各个乘数的分子、分母交叉约分,已经在应用乘法交换律和结合律,所以本单元着重体会乘法分配律。教学时要处理好三点:首先是观察、讲述两种解法的联系,要让学生说说怎样把其中一道综合算式改写成另一道综合算式,加强对乘法分配律的理解和表述。然后是回忆分数连乘,让学生感受以前的计算已经应用了乘法的另两条运算律。如1/41/39/10,交叉约分时应用了乘法结合律,只是没有写出1/4(1/39/10);又如2/31/53/4,约分时应用了乘法交换律,只是2/33/41/5这个过程没有写出来。最后才总结出整数的运算律在分数运算中同样适用,即分数乘法也存在交换律、结合律、分配律,运算律也能使一些计算变得简便。
应用乘法分配律进行简便运算,例1仅作些引导,要通过练习才能掌握。和整数、小数范围内应用乘法分配律简便计算相比,这里的计算往往有两个特点:一是隐蔽,如6/57/6-1/56/7。这是一道两数之积减两数之商的题,似乎与运算律对不上号。如果把分数除法转化成分数乘法,就显露出两个乘法算式有相同的因数,具备应用乘法分配律的必要条件。二是易混,如44/5+4/54。粗糙地看这道计算题,它的两道除法算式似乎很有联系,稍不留心就陷入简算误区。只有细心地把分数除法变成乘法,才会明白这道题不适宜应用分配律。本单元教材设计简便运算的练习题,注意了这两个特点。另外,还把按运算顺序计算和应用运算律简便计算混合编排,如第92页第2题。让学生设计各道题的算法,是培养计算能力的一种有效手段,也是促进思路灵活、反应灵敏的一种训练。
二、 数形结合教学较复杂问题的数量关系。
例2和例3是稍复杂的分数乘法应用题,它们都含有求一个数的几分之几是多少的数量关系。说它们稍复杂,是因为还分别含有其他的数量关系,有多种解法。就例2来说,可以根据运动员总人数减男运动员人数得女运动员人数列出算式45-455/9;也可以根据女运动员人数占运动员总人数的(1-5/9)列出算式45(1-5/9)。再说例3,可以根据去年班级数加今年比去年多的班级数得今年的班级数列出算式24+241/4;也可以根据今年的班级数是去年的(1+1/4)列出算式24(1+1/4)。教学这两道例题,教材里只出现前一种解法。因为这种解法的数量关系,是实际问题中最基本的数量关系,学生比较熟悉,已经掌握,容易寻找。而且,这些数量关系还是列方程解答其他分数、百分数应用题的基本关系,在以后的教学直至初中数学里经常应用。至于后一种解法,发展了对一个数的几分之几的认识,从一个已知的分率联想了其他的分率。如果学生能够独立想到,并且喜欢这样列式,应该是允许的。教材不出现后一种解法,不把它教给学生,是着眼今后,突出重点,减轻负担。
两道例题都利用线段图直观表达数量关系,帮助学生形成解题思路。例2已经画出了表示六年级参加学校运动会的人数的线段,学生在线段上表示男运动员占5/9的时候,会想到线段的另一部分表示的是女运动员人数,从而得到先算男运动员有多少人的思路。例3已经画出表示去年班级数的线段,要求学生继续画表示今年班级数的线段,从中体会今年班级数比去年多1/4的含义,看清今年班级数与去年班级数之间的关系,想到可以先算今年增加了几个班。教材引导学生画线段图,其目的不仅是帮助理解例题的数量关系和解题步骤,还要积累画线段图的体会和经验。以后解决实际问题,尤其是完成练一练和练习十六里的习题时,若有需要,能主动地通过画图帮助思考。为此,要加强画线段图的教学。首先让学生理解,先画出表示运动员总人数的线段和表示去年班级数的线段,才能继续表示男运动员人数和今年的班级数。这是分析男运动员占5/9以及今年班级数比去年增加1/4这两个分数的意义,得出的画图思路。其次让学生理解,男运动员是运动员总人数的一部分,可以表示在运动员总人数的线段图上。而今年的班级数与去年的班级数之间是比较关系,不存在包含与被包含的关系,因此各画一条线段表示它们。最后让学生看着画成的线段图,复述实际问题的题意,从中获得解题思路,体会线段图是表示数量关系的手段,是解决实际问题的工具。
练习十六里设计了一些题组,通过解题和比较,能进一步理解数量关系,明确解题思路。第4题的两问是连续的,先求得已经铺设的米数,就能继续求还要铺设的米数。比较这两问,能明白前一问里求840米的3/5是多少,后一问是从电缆总长里去掉已经铺设的米数。第8题的两小题分别是面粉比大米少1/5和面粉比大米多1/5,比较两个分数的意义,能理解两个问题的解法有何不同,以及为什么不同。第12题的两小题里都有1/4,一道题里是用去1/4,另一道题里是还剩1/4。因此,算式5/81/4在两道题里的意义不同。虽然两题都是求钢条还剩下的米数,解法不同的道理是很清楚的。第13题里设计了两个意义不同的1/8,其中一个1/8表示的是实际用煤节约的吨数相当于计划用煤吨数的份额,另一个1/8是实际用煤节约的吨数。由于两小题里实际用煤节约的吨数直接已知或不直接已知,求实际用煤吨数的方法自然就不同了。
教学内容:教材第101页面积计算和练一练,练习十九第6~15题,练习十九后的思考题。
教学要求:使学生加深理解和掌握已经学过的面积计算公式,进一步了解这些计算公式的推导过程及相互之间的联系,能正确地进行面积的汁算。
教学过程:
一、揭示课题
1.口算。
出示练习十九第6题,让学生口算。
2.引入课题。
这节课,我们复习学习过的面积计算。(板书课题)通过复习,要弄清面积计算公式的推导过程和相互之间的联系,能应用公式进行面积计算。
二、整理公式
1.提问:什么叫面积?我们学过哪些图形的面积计算?
面积的计量单位有哪些,你能说一说平方厘米、平方分米和平方米的大小吗?
2.整理公式。
出示第101页的图形。说明:这里的一组图形,表示了相应的面积计算公式的推导过程。请同学们看着第101页上这样的图想一想
每种图形面积计算公式怎样得到的,再把面积公式填在课本上,然后告诉大家这些公式和它们的来源。如果有不熟悉的,可以相互讨论。让学生填写公式并思考推导过程。
3.归纳公式。
指名学生说明相应的计算公式和推导过程,老师板书公式。追问:三角形、梯形面积计算时都要注意什么?(除以2)提问
从图上看,由长方形的面积计算推出了哪些图形的面积计算公式?由其中的平行四边形面积计算又推出哪些图形的面积计算公式?
想一想,这些图形的面积计算公式都以哪个图形的面积计算为基础来推导的?指出,我们在推导面积计算公式时,都是以长方形的面积计算为基础。
后面学习的一些新的图形的面积计算公式都是通过割、补,拼的方法,把它转化为已经能计算面积的图形来推导出来的。
三、组织练习
1.做练习十九第7题。
让学生做在练习本上。
指名口答算式与结果,老师板书,并让学生说一说是怎样想的。指出:根据三角形面积的推导过程,三角形的面积是等底等高的平行四边形面积的一半。
2.做练一练第1题。
小黑板出示,让学生做在课本上。指名口答结果,老师板书在小黑板上,结合让学生说说三角形、梯形和圆的面积是怎样算的。
3.做练一练第2题。
指名一人板演,其余学生做在练习本上。集体订正,结合提问学生要怎样换算成公顷。
4.做练习十九第9题。
指名一人板演,其余学生做在练习本上。集体订正,让学生说说是怎样想的。追问:这两个图形的周长相等吗?面积呢?你发现哪个面积大一些?有什么想法?(长方形和圆如果周长相等,那么圆的面积大)
5.做练习十九第13题。
让学生测量、计算。指名说一说每个图形是怎样想的,怎样做的.
6.让学生口答第14题,说说用什么方法可以求面积。
7.做练习十九第15题。
让学生操作、计算,然后口答长、宽和面积,老师依次板书。
四、讲解思考题
请同学们观察刚才不同长方形的长、宽和面积,讨论一下:当长方形周长一定时,长和宽的差的变化与面积的大小有什么关系?讨论后指名学生交流每组的讨论结果。追问:这些不同的长方形里,哪一个图形面积最大?指出:长方形周长一定,长和宽的差越小,面积越大;当它成为正方形时,面积最大。
五、布置作业
课堂作业,练习十九第8、11、12题。
家庭作业:练习十九第lO题。
l.使学生理解比例的意义和基本性质,能根据比例的意义和基本性质写出比例,判断几个数是不是成比例;会解比例。
2.使学生理解正、反比例的意义,认识正比例关系与反比例关系的联系和区别,能够正确判断成正、反比例的量,会用比例知识解答比较容易的应用题。
3.使学生认识比例尺的意义,能够应用比例的知识,求出平面图的比例尺以及根据比例尺求图上距离或实际距离。
4.通过比例的教学,使学生认识比例知识在工农业生产和日常生活里的实际应用,进一步受到辩证唯物主义观点的启蒙教育。
单元教学重点:理解比例的意义和基本性质。
单元教学难点:认识正比例关系与反比例关系的联系和区别。
(一)比例的意义和基本性质
教学内容:教材第30~31页比例的意义和基本性质,练习六第1~5题。
教学要求:使学生理解比例的意义和基本性质,能用比例的意义或性质判断两个比成不成比例;通过教学培养学生初步的综合、概括能力。
教学重点:理解比例的意义和基本性质。
教学难点:用比例的意义或性质判断两个比成不成比例。
教学过程:
一、复习旧知
l.什么叫做两个数的比?请你说出两个比。(教师板书)
2.什么是比的比值?上面两个比的比值是多少?
3.引入新课。
我们已经认识了比,知道怎样求比值。今天就根据比和比值来学习比例,并且认识比例的基本性质。(板书课题)
二、教学新课
1.教学比例的意义。
让学生算出下面各比的比值,再比较每组里两个比的比值有什么关系。(指名板演)
(1) 3 :5 24 :40 (2) : 7.5 :3
追问:比值相等,说明每组里两个比怎样?
说明3 :5的比值和24:40的比值都是 ,比值相等,也就是两个比相等,可以写成:
3 :5=24 :40(板书)这个式子表示两个比怎样? : 和7.5 :3也有怎样的关系?为什么?板书: : =7.5 :3 这个式子也表示什么?谁来说一说,上面两个等式表示的是怎样的式子?指出:表示两个比相等的式子叫做比例。
2.下面两个比之间的哪些○里能填=,为什么?
1 :2○3 :6 0.5 :0.2○5 :2
1.5 :3○15 :3 :2○ :1
提问:填了等号后的式子是什么? 1.5 :3和15 :3为什么不能组成比例?要判断两个比能不能组成比例,可以看它们的什么?指出:要判断两个比是不是相等,可以看比值是不是相等;也可以把两个比化简后看是不是相同的两个比。
3.教学例1。
出示例1,让学生先写出两次买练习本的钱数和本数的比。提问:怎样判断这两个比能不能组成比例?让学生判断并写出比例。提问:能不能组成比例?(板书比例式)为什么?强调:只有两个比值相等的比才能组成比例。
让学生根据比例的意义,在( )里填上适当的数。
3 :6=5 :( ) 0.8 :( )=1 :
如果学生有困难,启发用比值相等的方法推算。填写以后,提问学生:为什么填这个数?
4.教学比例的基本性质。
向学生说明比例各部分的名称。
让学生看开始组成的两个比例,说一说其中的内项和外项。让学生计算上面比例里两个外项的积和两个内项的积,并要求观察,从中发现什么。让学生口答结果。提问:从上面的计算里,你发现了什么,出示比例的基本性质,并让学生说一说。如果把比例写成分数形式,请你说一说外项和内项。提问:在这个比例里交叉相乘的积有什么关系?追问:为什么交叉相乘的积相等?
5.判断能否组成比例。
出示3.6 :1.8和0.5 :0.25。让学生自己根据比例的基本性质判断,如果能组成比例就写出这个比例式。提问:2.6 :1.8和0.5 :0.25能组成比例吗?指出:根据比例的基本性质,也可以判断两个比能不能组成比例,判断时可以先把两个比看成是比例。如果两个外项的积等于两个内项的积,两个比就能组成比例;如果不相等,就不能组成比例。
三、巩固练习
1. 提问:什么叫做比?什么叫做比例?比和比例有什么不同的地方?怎样判断两个比能不能组成比例?
2. 完成练一练。
指名4人板演.其余在下面练习。然后集体订正,让学生说说是怎样判断的,并说明可以用两个比是不是相等判断,也可以用比例的基本性质判断。
3.做练习六第1题。
让学生做在练习本上。如果能组成比例就再写出比例。提问练习情况并板书,让学生说明为什么。
4.做练习六第2题。
让学生判断,在练习本上写出来。提问:哪一个比和 :4组成比例?为什么,(比值相等,或化简后两个比相同)
5.完成练习六第3题。
学生先观察、计算,然后口答,说明理由。
四、全课小结
这堂课学习了什么内容?什么叫做比例?比例的基本性质是什么?可以怎样判断两个比能不能组成比例?
一、指导思想与理论依据:
《新课标》指出:有效的数学学习活动不能单纯的依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的的重要方式。数学学习活动应当是一个生动活泼的、主动的和富有个性的过程。
根据这一理念,在本节课的设计上,我突出两点,一是让学生主动经历数学结论的猜想动手操作,实践验证以及表述的过程;二是对学生放手,还学生自主的空间,自主探究,合作交流的学习方式贯穿课堂的始终。
二、教材及学情分析:
教材是在学生掌握了长方形和正方形周长,并初步认识了圆的基础上学习的。它是学生初步研究曲线图形的基本方法的开始,又是后面学习“圆的面积”以及今后学习圆柱、圆锥等知识的基础。学情分析:学生虽然有计算直线图形周长的基础,但第一次接触曲线图形,概念比较抽象不容易理解,推导圆周长的计算方法、理解圆周率的含义会有一定的困难。
三、教学目标、重点及难点:
1、知识和技能:
使学生直观认识圆的周长,掌握圆的周长的计算方法,理解圆周率的意义,并能正确灵活应用计算公式解决简单的实际问题。
2、过程与方法:
(1)通过组织学生观察和实验等活动,引导学生经历“猜想-验证-归纳、概括”的学习过程,认识圆周率。
(2)经历圆的周长计算公式的发现、探索过程,培养学生分析、抽象、概括,以及发现规律的能力。
3、情感与态度:
(1)通过学生动手操作、发现,激发学习兴趣,使学生体验探究问题的乐趣;
(2)结合圆周率的介绍,使学生受到爱国主义科学精神的教育。
(3)在解决问题过程中,增强应用意识。
教学重点:
让学生利用实验的手段,通过测量、计算、猜测圆的周长和直径的关系、验证猜测等过程理解并掌握圆的周长计算方法。
教学难点:
对圆周率的认识。
教学准备:
⒈圆形物体实物,。
⒉每个学生准备三个大小不同的圆片,一根线,一把直尺。
四、教法:
1、自主探究法。通过学生动手实践,寻求测量圆周长的方法,培养学生动手操作的能力,激活学生的思维。
2、合作交流法。合作交流是学生学习数学的主要方式。通过学生的团结协作,自主探索,讨论交流,培养学生的团结合作精神,激发学生主动学习的兴趣。
五、主要教学环节与设计:
通过以下环节教学本课:
一、创设情境,初步感知二、合作交流,探究新知三、实践应用,解决问题四、畅谈收获,课外延伸
六、教学过程:
第一个环节:创设情境,初步感知师:
哪些同学会骑自行车?在骑车时,车轮向前滚动一周,行驶了多长的路程?怎样计算?(出示车轮向前滚动的录像。)
生:求行驶多长的路程就是求圆形的周长。
师:今天就来学习怎样计算圆的周长。
此环节的设计目的:从学生熟悉的自行车入手,让学生感知求车轮滚动一周就是求圆的周长,激发学生学习新知的兴趣。
第二个环节:合作交流、探究新知
(一) 直观感知什么圆的周长通过以下活动帮助学生认识什么是圆的周长。
1、请你指出老师手中圆形物体的周长。准备一些实物有硬币、茶杯垫,让学生用手在圆周上滑摸等方式认识并理解圆的周长。
2、分析比较长方形、正方形和圆的周长各有什么不同?
3、指一指、描一描自己手中圆片的周长。
设计意图:让学生动手摸一摸后,初步感知圆的周长就是圆一周的长度。更增强了对圆周长的感性认识,并形象理解圆周长的意义。
(二)探究圆周长的计算方法
圆周长计算公式的推导这一内容,我安排了三个环节:
1、揭示矛盾,产生探索新知欲望。请同学们结合我们手里的圆想一想,有没有办法来测量它们的周长?
预设的几种情况:
(1)“滚动”——把实物圆沿直尺滚动一周;
(2)“缠绕”——用绳子缠绕实物圆一周并拉直;
(3)“折叠”——把圆形纸片对折几次,再进行测量和计算;
小结:以上的几种方法都是要“化曲为直”。
出示地球图片。
如果要计算地球赤道一周的长度,用刚才的绕线法、滚动法显然都无法测量怎么办?我们需要探讨求圆周长的一般方法。
设计意图:这个过程中让学生明白 “缠绕”、“滚动” 的方法是有局限性的,引发其探索“计算公式”的积极性、必要性,为深入研究圆周长的计算问题作好了“心理”铺垫。这样的矛盾,反而更能激发学生的求知欲。2、操作实验,探究圆周长计算方法在这一内容中,探究圆周率,理解圆周率是本课的难点,因此我设计让学生分小组合作,通过“猜想——实验验证——归纳概括得到结论”来完成。
(1)猜想,目的是让学生体会周长与直径之间的关系,重点解决“周长与什么有关”的问题。
师:圆的周长与它的什么有关呢?
生:圆的周长与它的直径有关。圆直径长,周长就大;直径短,圆周长就小。
(2)实验验证,目的是让学生发现周长与直径之间固定的倍数关系,重点解决“周长与直径有怎样的实质关系”的问题。
师:我们知道正方形周长是边长的4倍,那么圆的周长是直径的几倍呢?我们能不能像求正方形周长那样找到求圆周长的一般方法呢?
请同学们分组做个小实验,请利用手中的学具,用你喜欢的方法验证圆的周长与直径的倍数关系,记录在表格中。请你按照“我们组利用什么方法——过程怎样——结果如何”的顺序汇报实验过程
小组汇报:
生:我们测量的第一个圆直径是10厘米,周长是31厘米,周长是直径的3.1倍。第二个圆直径是2厘米,周长是6.5厘米,周长是直径的3.25倍。第三个圆直径是5.5厘米,周长是16.5厘米,周长是直径的3倍。
师:通过计算你们发现了什么?
生:每个圆的周长,都是它的直径长度的3倍多一些。
追问:那么是不是所有的圆周长与它直径都有这种关系呢?
最后师生共同概括出:任何一个圆的周长总是它的直径长度的3倍多一些。
师:由于测量时存在误差,导致结果不太一样,这很正常。你们的研究结果已经很接近数学家的结果了。谁知道我们把这个3倍多一些的数叫做什么?
生:圆周率。
师:你对圆周率还有哪些了解?
这个3倍多一些的数经过数学家周密计算发现是一个固定不变的数,我们把这个倍数叫做圆周率。读作π。对圆周率的发现最杰出的贡献者是祖冲之。圆周率是一个无限小数,在科技飞速发展的今天,计算机已经计算到了小数点后上亿位。小学阶段取它的近似值为3.14。板书:π≈3.14(出示相关的资料)
设计意图:通过同学们在小组中操作、交流、观察等活动,亲历感悟发现知识,达到理解的目的。圆周率有的学生早已知道,圆周率的有关知识是在师生共同补充交流中得到的,体现以学生为主体。祖冲之的事迹是一个非常好的爱国主义教育的典型。使学生感受到中国文化的博大精深,发展学生的情感态度价值观目标。
(3)得出结论师:你知道圆周长的计算方法了吗?
生:知道。
板书公式:C=πd,C=2πr
设计意图:推导圆周长公式,解决好了圆周率的问题,圆的周长的计算方法只是水到渠成的结果。
第三个环节:实践应用,解决问题
这一环节是对我们所探究结果的运用,即运用圆周长的计算公式来解决生活中的实际问题。
1、解决刚上课时提出的问题:车轮向前滚动一周,行驶了多长的路程?做到首尾呼应。
2、设计了三道有梯度的练习:①d=5米, C=?②r=5厘米 C=?③C=6.28米d=?3、明辨是非,下面的说法对吗?
①π=3.14( )
②大圆的圆周率小于小圆的圆周率。( )
③圆的周长是它的半径的2π倍。( )
意图:设计有关圆周率的判断,是帮助学生巩固新概念,加深对圆周率的理解。
第四个环节:畅谈收获,课外延伸作业:
赤道就像地球的“腰带”,它的长度大约是4万千米。你知道地球的半径大约是多少吗?
设计意图:在课堂即将结束时,我设置了与前面相呼应的求赤道周长的课外的拓展。这样的设置,把课堂的教学延伸到课外,提高学生的学习能力。
你有什么收获?(引导学生总结所学内容,学习方法,获得情感态度等体验。)
七、板书设计:
圆的周长
化曲为直 圆的周长÷直径=圆周率
C÷d=π 3.14×20=62.8(英寸)
C= πd 答:车轮向前滚动一周,行驶了62.8英寸。
C=2πr
【教学内容】
统计表。
【教学目标】
使学生进一步认识统计的意义,进一步认识统计表,掌握整理数据、编制统计表的方法,学会进行简单统计。
【重点难点】
让学生系统掌握统计的基础知识和基本技能。
【教学准备】
多媒体课件。
【情景导入】
1.揭示课题
提问:在小学阶段,我们学过哪些统计知识?为什么要做统计工作?
2.引入课题
在日常生活和生产实践中,经常需要对一些数据进行分析、比较,这样就需要进行统计。在进行统计时,又经常要用统计表、统计图,并且常常进行平均数的计算。今天我们开始复习简单的统计,这节课先复习如何设计调查表,并进行调查统计。
【整理归纳】
收集数据,制作统计表。
教师:我们班要和希望小学六(2)班建立“手拉手”班级,你想向“手拉手”的同学介绍哪些情况?
学生可能回答:
(1)身高、体重
(2)姓名、性别
(3)兴趣爱好
为了清楚记录你的情况,同学们设计了一个个人情况调查表。
课件展示:
为了帮助和分析全班的数据,同学们又设计了一种统计表。
六(2)班学生最喜欢的学科统计表
组织学生完善调查表,怎样调查?怎样记录数据?调查中要注意什么问题?
组织学生议一议,相互交流。
指名学生汇报,再集体评议。
组织学生在全班范围内以小组形式展开调查,先由每个小组整理数据,再由每个小组向全班汇报。
填好统计表。
【课堂作业】
教材第96页例3。
【课堂小结】
通过本节课的学习,你有什么收获?
【课后作业】
完成练习册中本课时的练习。
第1课时统计与概率(1)
(1)统计表
(2)统计图:折线统计图条形统计图扇形统计图
教学内容
教科书第40~41页例2,练习九第3~7题。
1.使学生进一步理解并掌握圆锥体积的计算公式,能较熟练地运用圆锥的体积公式解决问题。
2.在解决问题的过程中,学会思考,增强思维的灵活性,培养学生有序思考的习惯。
3.在探究问题中,发展学生的空间观念。
运用圆锥体积的计算方法解决生活中的问题。
灵活运用圆锥的体积计算公式解决问题。
小黑板
一、复习引入课题
教师:怎样计算圆锥的体积?
学生回答,教师板书体积公式:V=13SH
教师:谁能说说圆锥的体积计算公式是怎么推导出来的?
抽学生简要叙述圆锥的推导过程。
教师:要求圆锥的体积,应该知道哪些条件?
让学生弄清要求圆锥的体积应该知道圆锥的底面积和高。
教师:这节课我们就利用圆锥体积的计算方法解决生活和学习中常见的数学问题。
板书课题:圆锥的体积二
二、探究新知
1.教学例2
教师用投影仪出示例2。
一煤堆的底面周长18.84M,高1.8M,这个煤堆近似一个圆锥体。准备用载重5吨的车来运。一次运走这堆煤,需要多少辆车?(1M3煤重1.4吨)
教师要求学生带着问题理解题意。用投影仪出示问题。
(1)这道题讲的是什么事情?知道哪些条件?要求什么问题?
(2)要求这堆煤的质量,必须先求什么?
(3)要求煤的体积应该怎么办?
(4)这题应先求什么?再求什么?最后求什么?
教师鼓励学生独立思考,教师适时点拨。
反馈:要求学生用完整的语言叙述题意。
教师抽学生叙述思考过程,要求语言简洁,思路清晰。
在反馈过程中,尽量多抽几个学生叙述。
通过讨论,使学生明白,这题的关键是求出圆锥形煤堆的体积,也就求出了煤堆的质量。
教师抽学生上台板算。
板书:
煤堆的底面积:3.14×(18.842×3.14)2=3.14×9=28.26(M2)
煤堆的体积:13×28.26×1.8=16.956(M3)
1.4×16.956÷5≈5(辆)答:……
教师:最后的结果为什么要取整数部分再加1?
让学生明白装了4辆车后,剩下的虽然不够装一车,仍然要用一辆车装,因此要取整数。
教师:在实际生活和学习中,经常会遇到不知道底面积的情况,这时怎样求圆锥的体积?
2.小结
要求圆锥的体积必须知道底面积和高,如果只知道底面半径、底面直径或底面周长和高,要先算出圆锥的底面积,再利用圆锥的体积公式求出圆锥的体积。学会具体问题具体分析。
三、巩固练习
1.教师用投影仪出示教科书第42页第3题
观察图形,独立解答。抽二生上台板算。
让学生理解此题应先算出圆锥的底面积,才能求出容器的体积。
2.解答教科书第42页第4题
学生独立解答,抽生反馈说出思考过程。
通过这一题的练习,体会圆锥与圆柱之间的关系。
3.解答练习九第6题
学生独立完成,小组交流,展示思考过程,先算什么,再算什么。解答此题的关键是抓住体积不变进行解答。
4.发展练习
有一个底面周长是31.4DM,高9DM的圆锥形容器里装满了黄豆,现在要把这些黄豆放入另一个高9DM的圆柱形容器里,刚好装满。这个圆柱形容器的底面直径有多大?
教师引导学生读题,理解题意。
弄清已知条件和问题,根据条件寻找中间问题。明白先算什么,再算什么。
学生小组内交流,探讨解决方案。
反馈:学生用完整清晰的语言叙述解题思路。
弄清解决这题的关键是抓住黄豆的体积不变,即圆柱和圆锥的体积相等。这是解答此题的突破口。教科书练习九第5题,第7题。教师:今天这节课我们学了什么知识?通过这节课的学习,对圆锥的体积计算更熟悉了。知道圆锥和圆柱的知识与我们的生活息息相关,在解决实际问题时,应有序思考,灵活运用知识。
例2……
煤堆的底面积:3.14×(18.842×3.14)2=3.14×9=28.26(M2)
煤堆的体积:13×28.26×1.8=16.956(M3)
1.4×16.956÷5≈5(辆)答:
一、教材说明;
九年义务教育六年制小学数学[人教版]第十一册《圆的认识》
二、教学目标;
1、使学生认识圆,掌握圆的特征;了解圆的各部分名称。
2、会用字母表示圆心、半径、直径;理解并掌握在同圆(或等圆)中直径与半径的关系。
3、能正确熟练地掌握用圆规画圆的操作步骤。
4、培养学生动手操作、主动探究、自主发现、交流合作的能力。
三、教学流程;
1、导入新课
(1)学生活动(边玩边观察)。
①球、球相碰玩具表演。②线系小球旋转玩具表演。
[教师要求学生将观察到的形状告诉大家,学生异口同声回答:圆形。这里,教师采用学生感兴趣的玩具表演活动,既直观形象,又易于发现,进而抽象出“圆”。学生从“玩”入手,不知不觉进入学习状态。学习兴趣浓厚,乐于参与,利于学习。]
(2)师生对话(学生可相互讨论后回答)。
教师:日常生活中或周围的物体上哪里有圆?
学生:在钟面、圆桌、人民币硬币上……都有圆。
教师:请同学们用手摸一摸,体会一下有什么感觉?
学生用眼看一看、用手摸一摸,感觉:……闭封的、弯曲的。
教师(多媒体演示:圆形物体→圆):这(指圆)和我们以前学过的平面图形,有什么不同呢?
学生:以前我们学过的平面图形如长方形、正方形、三角形、平行四边形和梯形的共同特征,都是由线段围成的直线图形。而我们现在看到的(指圆)这种图形是由曲线围成的图形。
教师(鼓励表扬学生):对,这个图形就是圆,你能说说什么是圆吗?
学生讨论后回答:圆是平面上的一种曲线图形。(这时,教师请同学们把眼睛闭上,在脑子里想圆的形状,睁开眼睛再看一看,再闭上眼睛想一想,能否记住它。)
教师在此基础上揭示课题,并请学生回答:你还想认识圆的什么?学生说:还想认识圆的圆心、直径、半径……
[这里通过生生交流、师生互动,形象感知、抽象概括,帮助学生正确建立“圆”的概念。]
2、探索新知。
(1)探究——圆心
① 徒手画圆。
教师请两个学生一同在黑板上徒手画圆,然后请同学们评一评(3个人)谁画的圆好呢?……师生认为用工具画圆才能画得好。[师生共同表演、平等相待、大家评说、其乐融融。]
②用工具画圆。
教师请同学们用自己喜欢的工具画圆。学生画圆:a.用圆规画圆;b.用圆形物体画圆。[画圆方法任学生自选,既体现因人而宜、因材施教,又体现尊重学生(个性)、教学民主。]
③找圆心。
学生动手剪一剪、折一折,再议一议、找一找……自我探索发现圆的“圆心”。[教师放手让学生在动手操作中探索,在探索中发现新知,培养探究能力。]
教师引导学生归纳小结:圆中心的一点叫做圆心,圆心用字母“O”表示。(学生在圆形纸片上点出圆心,标出字母。)
④游戏趣味题。
在操场上,体育老师在地上画了一个大圆,给同学们做游戏。老师说,不管你站在什么位置,都会派上用场。你喜欢站在什么位置呢?请你点出来。
[教师请学生边点边说明这点与圆的位置关系,同时给予评说。如学生点到“圆心”,师评说:“你很有雄心,喜欢别人围着你转,将来必成大器。”如学生点到“圆内”,师评说:“你比较守规矩,喜欢在一定的范围内活动,将来不容易犯错误。”如学生点到“圆上”,师评说:“你做事很有规律,能够遵循原则,同时与‘上司’相处喜欢保持一定距离。”如学生点到“圆外”,师评说:“你很了不起,思维活跃,思路开阔,做事不愿受条条框框的束缚,喜欢创新,有开拓精神,将来定会大有作为。”……这样教学,生动有趣,其乐无穷,激励性强,学生乐学,学得轻松愉快、积极主动。学生对圆、圆心、圆内、圆上、圆外等基本概念能够有深刻的理解。]
(2)探究——圆的直径、半径及其关系。
教师:你还想知道什么?
学生:还想知道圆的直径、半径,直径与半径之间有什么关系?……
教学内容:教材第12页例3、练一练,练习二第6~11题。
教学要求:使学生进一步认识体积的计算方法,能根据不同的条件求圆柱的体积,学会计算套管体积的计算方法,井能应用于实际求出物体的重量。
教学重点:计算套管体积的计算方法。
教学难点:根据不同的条件求圆柱的体积。
教学过程:
一、铺垫孕伏:
1.求下列圆柱的体积(口答列式)。
(1)底面积3平方分米,高4分米;
(2)底面半径2厘米,高2厘米;
(3)底面直径2分米,高3分米。
追问:圆柱的体积是怎样计算的?(板书:V=Sh)
2.复习环形面积的计算公式。
提问:怎样计算环形面积?你能举例和同学们说一说吗?小组交流。
3.引入新课。
我们已经学习过圆柱的体积计算。这节课,就在计算圆柱体积的基础上,学习套管体积的计算。(板书课题)
二、自主探究:
1.教学例3。
出示例3,读题。提问:这道题求什么?要求钢管的质量先要求什么?怎样求钢管的体积?小组讨论。解答这道题还要注意些什么?(单位,取近似数)指名学生板演,其余学生做在练习本上。集体订正,说明每一步求的什么,怎样求的。
2.新课小结。
提问:怎样计算套管体积?如果知道套管的内周长和外周长几套管的长,怎样求套管的体积?
三、巩固练习
1.做练一练第1题。
指名两人板演,其余学生分两组,每组-题做在练习本上。集体订正。
2.做练习二第6题。
让学生在练习本上完成。指名学生口答算式,老师板书。结合让学生说一说是怎样想的。
四、布置作业
练习二第7、8题及数训。
本课题教时数:本教时为第2教时备课日期9月9日
教学目标
1、使学生理解整数除法分数的计算方法,并能正确地进行计算。
2、培养学生分析、推理和概括等思维能力。
教学重难点
整数除以分数的计算方法。
教学准备
教学过程设计
教学内容
师生活动
备注
一、复习旧知
二、教学新课
一、 巩固练习
四、小结。
五、作业
1、口算
3/431/542/766/112
分数除以整数通常是怎样计算的?
2、复习第(1)题
学生口答算式与结果。
这一题已知什么数量,要求什么数量?按怎样的数量关系求?
出示数量关系式:速度=路程时间
3、口答填空
3/10小时是()个1/10小时。
1小时是()个1/10小时。
4、引入新课
1、教学例2
这一题已知什么数量?要求什么数量/根据数量关系式怎样列式?
(183/10)
画出一条线段,并提问:如果把这条线段看做1小时行的千米数,怎样来表示3/10小时行的千米数?
根据学生的回答把这条线段平均分成10份,其中的3份用颜色线画出。
师边述说边画线段。
问:从图伤看,3/10小时行驶18千米,就是几个1/10小时行18千米?求1小时行多少千米。就是求几个1/10小时行多少千米?
要求10个1/10小时行多少千米。先要求出什么?图上哪一段表示1/10小时行的路程?
根据回答把线段图补充完整。
讨论:按这样来想,你认为第一步求什么?怎样求?
(1)1/10小时行的千米数是:183
为什么要用183?183能不能转化成用乘法来计算?
讨论:1/10小时行的千米数已经用式子表示出来了,你觉得第二步可以求什么?怎样求?
(2)1小时行的千米数是:181/310
(3)为什么要用181/3的积再乘10?根据乘法结合律,181/310还可以怎样乘?
问:183/10求出的是1小时行的千米数,1810/3也表示1小时行的千米数,那么183/10之间有怎样的关系?
从上面的推想过程看出,183/10转化成什么样的计算了?
比较这个等式里的算式,在等式两边,什么没有变?什么变了?是怎样变的?
2、小结。
1、练一练1
2、练一练2整数除以分数是怎样计算的?
3、练习八2整数除以分数和整数乘分数在计算时有什么不同?
4、练习八3
分组练习
做完后问:每一组的两道题有什么不同地方?计算时有什么共同的地方?
说一说在整数除以分数时,要乘哪个数的倒数,在分数除以整数时,要乘哪个数的倒数。
练习八、1、4、5
181/310
=18(1/310)
=1810/3
课后感受
此节课的教法与前一节类似,更多的在于在学生昨天学会分析方法的'前提下更多的放手让学生自己去探索规律、寻求解题方法。
【教学目标】
1.使学生在具体的情境中理解比的意义,掌握比的读写方法,知道比的各部分名称,会求比值。
2.使学生经历探索比与除法、分数关系的过程,初步理解比与分数、除法的关系,明白比的后项不能为0的道理,会把比改写成分数的形式。
3.使学生在数学活动中,培养学生分析、综合、抽象、概括等能力,体会数学知识之间的联系,感受数学学习的乐趣。
【教学重难点】
理解比的意义,比与分数、除法的关系。
【教学过程】
一、创设情境,引入比。
1.图片激趣,引发讨论,设置悬念。
2.电脑呈现例l主题图。
提问:2杯果汁和3杯牛奶这两个数量之间有什么样的关系?你会用哪些方法表示它们的关系?
3.揭题:比较两个数量之间的关系还可以用一种新的方法比。
二、自主探索,认识比。
(一)初步理解比
1.启发谈话:用比怎样表示2杯果汁和3杯牛奶这两个数量之间的关系呢?刚才有同学会说,谁来试着说一说。
果汁的杯数相当于牛奶的2/3,我们还可以说成果汁与牛奶杯数的比是2比3
牛奶的杯数相当于果汁的3/2还可以怎样说成牛奶与果汁杯数的比是3比2
2.看书自学, 汇报交流:
(1)写法
(2)各部分名称
(3)比是有序的。
3.完成p68试一试
(二)深入认识比
1.认识不同量之间的比。
(1)生读例2,师:读了这条信息,你能提出什么数学问题?
(请学生分别算出它们的速度,填入表格。)
(2)指出:像路程和时间这两个有着相除关系的量,我们也可以用比来表示。
交流得出:小军走的路程与时间的比是900:15、小伟走的路程与时间的比是900:20。
(3)追问:900:15表示什么?900:20呢?(速度)
2.丰富对不同类量的两个数量比的认识。
张祥买3本笔记本用了10.5元。
提问:这句话中告诉了我们哪两个量?它们之间有着怎样的关系呢?会用比来表示吗?
3.总结概括比的意义。
(1)观察一下这几组式子,总结相同的特点。
(2)提问:你认为两个数的比表示的是两个数量之间怎样的一种关系?
(3)小结:两个数的比归根结底表示的都是两个数相除。
三、自学课本,内化比。
1.自学课本p69
2.反馈:通过看书,你还知道了什么?
__求比值。
__分数形式的比。
__理解比、除法、分数之间的关系
利用表格整理知识
名称
相互联系
区别
比
前项
:(比号)
后项
比值
倍数关系
除法
被除数
(除号)
除数
商
运算
分数
分子
(分数线)
分母
分数值
数
__比的后项可以是0吗?你是怎样想的。
__你还有没有什么疑问?
四、多样练习,应用比。
__说一说(基本练习)
__辩一辩(判断对错)
五、回顾梳理,总结比。
今天我们共同学习了什么?对于比,你有什么样的认识和收获?还有什么问题吗?
教学内容:
欣赏与设计 第27~28页
教学目标:
1、通过欣赏与设计图案 ,使学生进一步熟悉已学过的轴对称、平移现象。
2、欣赏美丽的对称图形,并能自己设计图案。
教学重点:
通过欣赏与设计图案,使学生进一步熟悉已学过的轴对称、平移现象。
教学难点:
欣赏美丽的对称图形,并能自己设计图案。
教学准备:
ppt课件
教学过程:
一、复习引入
师:在本单元里,我们学习了哪些有关图形变换的知识,轴对称、平移?师:举例说明生活中有哪些轴对称和平移的现象?这两种现象有什么特点?
生自由汇报。
二、欣赏图案
1、导入课题。
师:同学们,你们想成为一名小小设计师吗?今天我们一起来学习《欣赏设计》,只要你们好好学习,我想你们就一定能设计出美丽的图案。
板书课题:欣赏与设计
2、图案欣赏。 出示课件,学生欣赏图案。
3、说一说。
师:上面这几幅图的图案是由哪个图形变换得到的?
小组讨论,再进行交流。
4、想一想。
出示课件。
仔细观察这图案是由哪个图形经过什么变换得到的?同桌交流汇报。请你在方格纸上继续画下去。
设计图案图案前,让学生说说要注意哪些?
三、设计图案
1、利用轴对称、平移设计一个图案。 2、交流并欣赏。说一说好在哪里?
3、师生活动,教师提问,学生互评。
四、练习巩固
1、完成教材第28页练一练第1、2、3、4题。 五、课堂总结:轴对称和平移知识广泛地应用于平面、立体的建筑工艺和几何图像上,而且还涉及到其他领域,希望同学们平时注意观察,成为杰出的设计师。
六、作业布置
板书设计:
欣赏与设计
轴对称与平移
学生设计作品展示
教学内容:教材第18~19页练习四第5一11题和思考题。
教学要求:
使学生进一步掌握四则混合运算的运算顺序,选择灵活、合理的计算方法,比较熟练地计算混合运算的三步式题。
教学过程:
一、揭示课题
这节课,我们主要练习带有小括号的混合运算。(板书课题)通过练习,要进一步掌握带有小括号的混合运算的运算顺序,能正确地、比较熟练地按运算顺序计算已经学习的三步计算式题,使计算能力得到提高。
二、组织练习
1.口算练习四第5题。
出示口算卡片,指名学生口算
2.做练习四第6题。
然后集体口算一遍。
小黑板出示,让学生观察,每一道题对不对,错在哪里。让学生改在练习本上。
提问:第1小题为什么不能从左往右先算165减657第2小题的小括号为什么不能去掉?
指出:带有括号的混合运算,要先算括号里面的。当小括号里又含有加(减)和乘(除)时,要先算乘除法,再算加减法。小括号在题中能够改变混合运算的运算顺序,所以不能随意添加或去掉小括号。
3.做练习四第7题对比练习。
教学目的:使学生理解分数乘以整数的意义,在理解算理的基础上掌握分数乘以整数的计算法则,并能正确运用“先约分再相乘”的方法进行计算。
教学过程:
一、复习。
1、5个12是多少?
用加法算:12+12+12+12+12
用乘法算:12×5
问:12×5算式的意义是什么?被乘数和乘数各表示什么?
2、计算:
问: 有什么特点?应该怎样计算?
3、小结:
(1) 整数乘法的意义,就是求几个相同加数的和的简便运算。被乘数表示相同的加数,乘数表示相同的加数的个数。
(2) 同分母分数加法计算法则是分子相加作分子,分母不变。
二、新授
教学例1。
出示例1:小新爸爸、妈妈一起吃一块蛋糕,每人吃 块,3人一共吃多少块?
用加法算: (块)
用乘法算: (块)
问:这里为什么用乘法?乘数表示什么意思?
得出:分数乘以整数的意义与整数乘法的意义相同,
都是求几个相同的和的简便运算。学生齐读一遍。
练习:说一说下面式子各表示什么意思?(做一做第3题。)
问:那么分数乘以整数方法应该是怎样算?(通过观察例1,得出分数乘以整数的计算法则)
三、巩固练习。
1.第2页做一做。
2.练习一
教学重点:认识倒数并掌握求倒数的方法
教学难点:小数与整数求倒数的方法
教学过程:
一、基本训练
口算:
上面各式有什么特点?
还有哪两个数的乘积是1?请你任意举出乘积是1的两个数。
(板书:乘积是1,两个数)
二、引入新课
刚才我们所举出的乘积是1的两个数之间有一种特殊的关系。
(板书:倒数)
三、新课教学
1、乘积是1的两个数存在着怎样的倒数关系呢?
请看:,那么我们就说是的倒数,反过来(引导学生说)
是的倒数,也就是说和互为倒数。
和存在怎样的倒数关系呢?2和呢?
2.深化理解
提问:①什么是互为倒数?
怎样理解这句话?(举例说明)
(的倒数是,的倒数是,......不能说是倒数,要说它是谁的倒数。)
②0有倒数吗?为什么?1有倒数吗?什么?(0虽然可以看作几分之0,如,,......但是把分子、分母调换位置,分母为0,不成立,所以0没有倒数,另外0和任何数相乘却为0。1可以写作,1与相乘还是1,符合倒数的意义,所以1的倒数是1)。
3.求一个数的倒数
教师设疑:怎样的两个数互为倒数呢?请同学们试着写一写。
①出示例题
例:写出、的倒数
学生试做讨论后,教师将过程板书如下:
所以的倒数是,的倒数是。
(能不能写成,为什么?)
总结:求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。
②深化
你会求小数的倒数吗?(学生试做)
四、训练、深化
1.下面哪两个数互为倒数
(出示课件一下载)
2.求出下面各数的倒数
(出示课件二下载)
3.判断
①真分数的倒数都是假分数。()
②假分数的倒数都小于1。()
③0没有倒数。()
4.提高
会填了吗?
如果末尾加上=1怎么填?
如果末尾加上=0怎么填?
如果末尾加上=2怎么填?
五、课堂小结
今天我们学习了有关倒数的哪些新知识?什么叫倒数?怎样求一个数的倒数?还有不明白的问题吗?
六、课后作业
练习六2、3
七、板书设计
略