成语

比例的基本概念的说课稿(景观比例的基本概念)

比例的基本概念的说课稿(景观比例的基本概念)


比例的基本概念的说课稿6篇

说课稿的解释也可以包括对教学策略和教学思路的阐述,以及对教学方法和手段的选择和合理性的解释。现在随着小编一起往下看看比例的基本概念的说课稿,希望你喜欢。

比例的基本概念的说课稿篇1

教学内容:

六年制小学数学第十二册课本第55页例1.例2.作业本第31(29)。

教学目标:

1.使学生理解比例的意义。

2.使学生能应用比例尺的知识求平面图的比例尺,以及根据比例尺求图上距离和实际距离。

3.培养学生分析问题、解决问题的能力和创新能力。

教学重点:

理解比例尺的意义。

教学难点:

根据比例尺求图上距离和实际距离。

教具准备:

多媒体课件一套。

教学过程:

一、问题的情景:

1. 出示邮票。问:你能同样大小的把它画在图纸上吗?

让同学们画一画,再拿出邮票的长,比一比,怎么样?

归纳:(同样长)得:图上的长和实际的长的比是1:1。

2. 教室的长是9米,你能同样长的画在图纸上吗?更大一些呢?

如果操场的长,整个中华人民共和国,能完全一样画在平面图上吗?(不能),想个什么方法(窍门)可画上去了?

3. 让生猜想:(出示学校平面图)图上操场的长和实际长的比,还会是1:1吗?大约是几比几?

4. 导入新课:人们在绘制地图和平面图时,往往因为纸的大小有限,不可能按实际的大小画在图纸上,经常需要把实际距离缩小一定的倍数以后再画成图。象手表等机器零件比较小,又得把实际长度扩大一定的倍数以后,才能画到图纸上去。这就.需要涉及到一种新的知识。也就是今天我们一起来研究比例尺的问题。

板书:比例尺

二、问题解决:

5. 一个教室长是9米,如果我们要画这个教室的平面图,为了看图和携带方便,就需要把实际距离缩小一定的倍数后画在平面图上,缩小多少倍由你自己决定,你打算设计:用几厘米表示9米。请四人小组讨论并设计。

6. 小组回报设计方案,教师选择以下四种方案。

(1).用9厘米表示9米

(2).用4.5厘米表示9米

(3).用3厘米表示9米

(4).用1厘米表示9米

7. 说说以上方案是图上距离比实际距离缩小了多少倍?

算一算,每幅图 图上距离和实际距离的比。

(1).9厘米9米=9900=1100

(2).4.5厘米9米=4.5900=1200

(3).3厘米9米=3900=1300

(4).1厘米9米=1900

8. 这四个比的前项代表什么?(图上距离),后项代表什么?(实际距离),我们把这样的`比,叫比例尺。

齐读:比例尺是图上距离与实际距离的比,化简后得到最简整数比。

比例尺怎样求:(看上述四个比例式得出):

图上距离实际距离=比例尺 或 图上距离

实际距离

9. 讨论汇报:上面四幅图,比例尺是多少图最大?

比例尺是多少图再小?为什么?

10. 练习:

(1).甲、乙两座城市相距120千米,在地图上量得两城市的距离是4厘米。求这幅地图的比例尺。

(2).学校里修建运动场,在设计图上用25厘米长线段来表示操场的实际长度150米。求图上距离和实际距离的比。

(3).一张中国图,图上4厘米表示实际距离1040千米,求这幅地图的比例尺?

(4).一张紧密图纸中,图上1厘米表示实际1毫米,求这幅精密图纸的比例尺?

(观察精密零件如果要画在图纸上,怎么办?(放大)。那这幅精密图纸的比例尺会求吗?

上述四题分层练习,后讲评。

11. 比较(3)、(4)两题的比例尺有什么不同?

教师小结:一般把缩小图的比例尺写成前项是1的比,而把放大图的比例尺写成后项是1的长。

12. 比例尺有多少种表示方法?让生说一说

(常见的有:比的形式 分数的形式 线段形式)

三、问题的应用:

根据比例尺的关系式,求实际距离。

(1).出示例2 在比例尺是130000000的地图上,量得上海到北京的距离是3.5厘米。上海到北京的实际距离大约是多少千米?

(学生独立解答,同时抽一生板演)

解:设上海到北京的实际距离为x厘米,

x=105000000

105000000厘米=1050千米。

答:上海到北京的实际距离大约是1050千米。

(2).分析讲述:

根据比例尺的计算公式,已知图上距离和比例尺求实际距离,用方程解。

(先设x,再根据比例尺的计算公式列出方程。)

(3).图上距离和实际距离的单位要统一,一般都统一为低级单位厘米。

(4)怎样设x,.教师指出:设未知数时,单位要与已知单位统一,后再化聚到问题单位。

(5)尝试练习第57页试一试。

河西村到汽车站的实际距离是20千米,图上距离是5厘米,算出这幅地图的比例尺。汽车站到县城的图上距离是15厘米,实际距离是多少千米?

比例的基本概念的说课稿篇2

教学内容:

比例尺

教学目的:

使学生理解比例尺的意义,掌握求比例尺,求实际距离和求图上距离的解题方法,并会运用这些方法解这类应用题。

教学重点:

掌握求比例尺的解题方法。

教学准备:

世界、中国地图。

教学过程:

一、 导入新课

出示世界地图:让学生观察。

师:地图或其他平面图都是把实际距离缩小或方大一定的倍数画面的。利用这张地图,我可以很快告诉你两地之间的实际距离。你想知道哪两地间的实际距离呢?请同学们出题考老师。

学生提问,老师用直尺在地图上量出图上距离,再心算出实际距离后回答。

师:仅靠这把直尺是早不出两地实际距离的,还要用地图上的比例尺去计算。地图的这个尺与手中的尺不同。今天我们就来学习地图上的尺――比例尺。(板书课题)通过这节课的学习,大家就能掌握老师刚才的本领了。

二、教学

1. 教学例4,设计一座厂房,在平面图上用10厘米的距离表示地上10米的距离。求图上距离和实际距离的比。

(1) 读题、理解题意。

求图上距离和实际距离的比是什么意思?图上距离是多少?实际距离是多少?它们的比呢?长度单位相同吗?单位不同怎么办?

(2) 学生边口答,师边板书如下:

图上距离/实际距离=10米/10厘米=1000/10=100/1

1、 归纳总结:根据刚才例4,说说什么叫比例尺?怎样求比例尺?谁是前项?谁是后项?

师:比例尺是表示图上距离与实际距离之间的倍数关系,是一个比,它不带计量单位。求比例尺时图上距离和实际一定要先化成同级单位后再化简。为了计算简便,通常把比例尺写成前项是1的比。如例4的比例尺应写成1:100或100/1有时放大的比例尺后项为1。

3、练习。

(1) 下面这段话中的各比,哪些是比例尺,哪些不是?为什么?

把一块长50米,宽10米的长方形地,画在一幅平面图上,长画25厘米,宽画5厘米。那么图上长和实际长的比是200/1;图上宽与实际宽的`比是200/1;图上周长与实际周长的比是200/1;图上面积与实际面积的比是40000/1;实际宽与实际长的比是5/1;实际长与图上长的比是200 :1。

(2) 课本第6页的做一做练习后讲评。

4、教学例5。

(1) 在比例尺是1:6000000的地图上,量得南京到北京的距离是15厘米。南京到北京的实际距离大约是多少千米?

学生读题,理解题意,已知什么条件?要求什么问题?怎样得用比例尺的关系式来解答?用方程解,X该设什么单位?为什么?列式时,比例尺要用什么书写形式?

学生尝试练习后,对照课本检查。指名板演后,讲解。强调设实际距离是X厘米,算出实际距离的厘米数后,要再变成千米数。

(2) 练习:课本第7页的做一做,练后教师讲评。

三、巩固练习

例5有其他解法吗?怎样解?

提示:实际距离等于什么?图上距离等于什么?

比例的基本概念的说课稿篇3

教学目标

(体现多维目标;体现学生思维能力培养)

1、知识与技能:使学生认识比例尺的含义,掌握求比例尺的方法,并能用以解决简单的求比例尺的实际问题。

2、过程与方法:通过小组合作研讨,实践操作,培养学生的合作意识和创新思维能力。

3、情感态度价值观:体验数学与生活的联系,培养用数学眼光观察生活的习惯。

重点、难点

教学重点:理解比例尺的意义。

教学难点:能熟练解答比例尺的有关问题。

教法、学法

学生独立思考,小组合作,教师引导

教 学 流 程

媒体运用

任务导学

明确

任务

出示:数值比例尺为1:100000000的中国地图和线段比例尺为1:500000的北京地图)你们知道我们的大中国和北京是如何画在这么小的地图上吗?

老师可以利用地图和手中的一把直尺很快地告诉大家任意两地之间的实际距离,你想知道哪两地之间的距离呢?

同学们可能有这样的疑问,老师凭借这把直尺是如何知道两地之间的实际距离的呢?你们想知道其中的奥秘吗?

课堂探究

自主

学习

师:其实老师仅靠手中的直尺是量不出两地之间的实际距离的,还需要用地图上的比例尺来帮忙。

今天这节课我们就来认识比例尺。(板书:认识比例尺)

师:关于比例尺,你想了解什么呢?

师:为了解决同学们提出的疑问,我们来做一个实验。

师:我这有一条3米长的线段,你能把它画到自己的.练习本上吗?你准备用图上几厘米来表示实际3米?请画在纸上。

合作

探究

1、小组的同学互相讨论自己是怎么画的。

师:为了看出图上距离和实际距离的关系,我们可以用比的形式来表示。(由于图上距离和实际距离的单位不同,要把不同单位化成相同单位)下面请各小组求出图上距离与实际距离的比。

展示学生求的比。

师:这些比的前项代表什么?后项又代表什么呢?

师:像这样的比叫做比例尺,出示比例尺的定义。

师:根据比例尺的定义,你能得出求比例尺的方法吗?(讨论)

生:图上距离:实际距离=比例尺或图上距离/实际距离=比例尺

师:各小组设计的比例尺不一样,为什么?按哪一个比例尺画出的线段长,哪个比例尺画出的线段短?为什么?

2、探讨数值比例尺和线段比例尺的互化

呈现北京市地图让生找出“比例尺 ”

师:这种表示方法叫线段比例尺,表示图上距离1厘米相当于地面上50千米的实际距离。

师:如何把这幅地图的线段比例尺改成数值比例尺?

小组的同学互相讨论尝试改写。

交流

展示

师生共同小结改写时要注意什么?

反馈拓展

拓展

提升

(1)图上距离与实际距离的单位不同,要把不同单位化成相同单位,50千米改写成用厘米作单位的量时,50后面应补5个0(2)比例尺是一个比,不带单位名称(3)比的前项为1

评价

检测

1、我会判断

(1)比例尺是一种测量长度的尺子

(2)一副图的比例尺是80:1,表示把实际距离扩大80倍

(3)比例尺的后项一定比前项大

2、教师黑板的长为3米,在图纸上的长为3厘米,求这幅图纸的比例尺。

3、精密仪表上的一个零件4毫米,量得在设计图纸上的长度是8厘米,求这幅图纸的比例尺。

比例的基本概念的说课稿篇4

【学习目标】

1、让学生在实践活动中体验生活中需要比例尺。

2、 通过观察、操作与交流,体会比例尺的实际意义,了解比例尺的含义。

3、 运用比例尺的有关知识,通过测量、绘图、估算、计算等活动,学会解决生活中的一些实际问题。

4、学生在自主探索,合作交流中,逐步形成分析问题、解决问题的能力和创新的意识,体验数学与生活的联系,培养学生用数学眼光观察生活的习惯。

【教学重点】

正确理解比例尺的含义。

【教学难点】

运用比例尺的有关知识,通过观察、操作与交流,体会比例尺的实际意义,解决生活中的一些实际问题

【教学过程】

一、画图产生疑问、引入新知

1、画图

师:同学们,今天我们在上新课前先来画一画图,请同学们翻开课堂练习本,拿出尺子。

请在本子上画出一条长5厘米的线段。

请在本子上画出一条长12厘米的线段。

请大家在本纸上画一条长1米的线段。(生面有难色)

师:怎么不画了?有什么疑问吗?(本子没有1米长)那该怎么办呢?

(把1米长的线段缩短后,画在本子上)(生画)

2、引入新知

师:说一说,你是怎么画的?(生:10厘米、5厘米、或1厘米长的表示(板书)

师:看来同学们的表示方法各不相同,像2厘米、5厘米、10厘米这些在图上画出的线段的长度,我们叫“图上距离”,而这1米就叫“实际距离”。

师:但是如果把黑板上的数据1米擦去,只把本子上的2厘米、5厘米线段图给别人看,别人能知道你表示的实际距离是1米吗??那么今天,我就向大家介绍一位新朋友,它就是《比例尺》!(板书)

二、自主探究,理解比例尺的意义

1、理解比例尺意义

师:大家请看笑笑同学就根据比例尺的知识画出了他家的平面图,你看他图中的比例尺是?你知道1:100是什么意思吗?同学们思考一下,把你的想法跟同桌说一说(生思考交流)

生汇报:1表示图上距离、100表示实际距离

图上的1厘米的线段,表示实际的100厘米,

实际距离是图上距离的100倍。

师:对,图上的1厘米,表示实际的100厘米,因此比例尺实际上就等于图上距离与实际距离的比(板书:比例尺=图上距离/实际距离)生读一读

2、生活中的比例尺

师:生活中,你在哪些地方有见过比例尺?)黄老师也收集了一些,请同学们看一看(出示各图,分别让学生读出图中的比例尺并说出它们表示的意义)

3、自己写一个比例尺

师:现在你们自己在本子上写一个比例尺,并向同桌说一说它表示的意思

生汇报

4、总结比例尺的特点

师:我们现在初步的认识了比例尺,你有没有发现比例尺有什么样的特点?(生说)总结:是一个比; 图上距离和实际距离的单位是统一的;比例尺的前项一般为1

三、运用知识,尝试解决问题。

1、解决第2小题

师:同学们,笑笑按比例尺1:100画出了她家的平面图,他想带我们看看他的卧室,请大家把书翻到30页,先请大家量出他卧室长宽的图上距离是多少吧?(课件)

(1) 量出笑笑卧室的长和宽

师:你们量出了笑笑卧室长是?宽是?那你们算出笑笑卧室实际的长和宽吗和面积吗?(课件出示)试一试,并把你的解题思路写在练习本上。

(2)算出笑笑算一算笑笑卧室实际的.长是()米,宽是()米,面积是()平方米。

a : 学生独立完成。(师巡视)

b : 学生汇报计算方法。(展示仪展示)

小结回顾

想一想,我们刚才在求笑笑卧室面积的过程中都经历了哪些程序?(先量出图上距离,在求出实际距离,然后才能算出面积)

2、解决笑笑家的总面积是多少平方米?

先让学生讨论一下,再汇报方法,然后再计算

学生汇报计算方法。(展示仪展示)

3、解决第4题

师:笑笑在设计图时还遇到了难题,我们一起来帮帮她吧!

(课件出示在父母卧室的南墙正中有一扇宽为2米的窗户,在平面图上标出来。)

(1)分析题意,让学生说一说(这道题什么意思呢?谁来说一说)

(1) 学生交流想法。

(2) 学生独立完成。

生1:2米=200厘米 200/100=2厘米

生2:200÷100=0.02米 0.02米=2厘米

师:同学们的表现都非常的出色,笑笑还为我们出了道难题,大家敢于应战吗?

4、解决第5题

(课件出示:笑笑的卧室长4米,画在图纸上,她用8厘米表示自己卧室的长。)

1、 图上1厘米表示的实际距离是多少厘米?

2、 她画的平面图的比例尺是多少?

生:小组合作、讨论、探究、反馈汇报。

四:全课总结

师:通过前面的学习,你能谈谈自己的收获

比例的基本概念的说课稿篇5

教学目标

1. 通过学习,初步了解比例尺的意义。

2. 认识数值比例尺和线段比例尺两种不同表现形式,学会求出平面图的比例尺。

3. 能运用所学的比例尺的知识解决生活中的问题,并在小组合作中培养合作意识和创新思维能力。

4.情感、态度、价值观:体会数学与日常生活的密切联系。

教学重、难点:

(1)理解比例尺的含义。

(2)能根据图上距离、实际距离、比例尺中的两个量求第三个量。

教具学具

小黑板、课件、备一幅地图

教学过程

一、导入新课

同学们,昨天老师请大家自己动手测量了我们教室的长和宽。现在老师提议大家以小组为单位,当一名绘图师,利用你们手里的材料,画出我们教室的平面图。再动手之前,先考虑这两个问题:

1. 要把教室的平面图画在纸上,你有这么大的纸吗?那怎么办?

2. 随便在纸上画一个长方形,这一定是教室的平面图吗? 小组合作并完成汇报,在实物展示台上展示自己的作品。

教师总结:同学们都很聪明,你们都把实际的长和宽缩小了,画出了教室的平面图,其实就是用到了今天我们要学习的知识――比例尺,也就是把实际距离按一定的倍数缩小。

揭示课题:今天我们一起来学习比例尺的知识。

二、学习新课

1.学习比例尺的意义。

(1)动手操作

请学生在小组内算一算自己所画的教室平面图的长和宽各缩小了多少倍。

学生们计算并汇报,集体订正。

一个教室长8米,宽7米,如果我们要画这个 教室的平面图,就需要把实际距离同时缩小一定的倍数后,画在平面图上,缩小多少倍由你自己决定,你打算设 计:

1、用几厘米表示8米和7米。

2、你设计的方案是图上距离比实际距离缩小了 多少倍?

3、算一算、每幅图的图上距离与实际距离的比。

同学们刚才算出的各幅图的图上距离和实际距离的比就叫做这幅图的比例尺。我们把教室实际的长和宽叫做实际距离,把画在纸上的教室的长和宽叫做图上距离。

请学生重复说一遍什么叫做比例尺。

板书:图上距离:实际距离=比例尺

请每个人算一算自己所画的教室的平面图的比例尺是多少。

(2)观察地图,自由交流。

课件出示世界地图、中国地图和学校的平面图,再请同学拿出自己事先准备的地图,在小组内观察、交流并思考:不同地图的比例尺有什么不同的地方?

引导学生充分发表意见,教师辅助讲解:

1比较出比例尺的两种不同表现形式――数值比例尺和线段比例尺 2比例尺的大小不同,同样的佛山市在中国地图、广东地图和佛山地图上的大小都不一样,这就是采用了大小不同的`比例尺。

(3)学习不同的比例尺。

课件出示教材第49页的机器零件图,引导学生观察后提问:请你观察这幅图的比例尺,和我们刚才所观察的比例尺有什么不同之处?

在生产中,有时由于机器的零件比较小,这是就需要把实际的距离扩大一定的倍数以后,再画在图纸上这幅图就是这样的,比例尺2:1,你知道是什么意思吗?

补充说明:为了计算方便,我们通常把比例尺改写成前项或后项是1的比。

(4)学习例1。

课件出示例1的题目,提问:线段比例尺怎么改写成数值比例尺?数值比例尺是怎么求的?图上距离和实际距离的单位不同该怎么办?

板书:图上距离:实际距离

=1cm:50km

=1cm:cm

=1:

请学生根据刚才的解答,说说求比例尺需要知道哪些条件,怎样求比例尺,谁是前项,谁是后项。

2.知识运用。

(1)即时训练。

学生独立完成教材第49页的“做一做”,教师巡视指导,帮助个别有困难的学生。

集体订正后引导学生通过交流讨论,明确根据图上距离与实际距离求比例尺的方法:首先依据比例尺的意义写出比的前项后项,写出比,图上距离与实际距离位置不要写错;接着把两项化成相同的单位;最后化简比,变成前项或后项是1的比。

(2)拓展训练。

课件出示下列四个问题:

1每年十月,莫斯科红场将举行盛大的阅兵仪式,以庆祝“十月革命”的胜利,如果我们坐飞机前去观看,请你仔细观察手中的世界地图,算出首都北京到俄罗斯首都莫斯科的距离。

2天津是2008北京奥运会足球赛区城市之一,如果你是设计师,请你设计出足球场的平面图,并标出比例尺。(足球场的长是90~120米,宽是60~90米)

3眼镜上的螺丝钉长是3毫米,螺帽宽1毫米,假如你是技术员,请你画出它的平面图,你有什么困难?怎么办?

4这里有比例尺1:20、20:1和1:1,它们的意义相同吗?请举例说明。

请学生在这四个问题中任选一个,给充足的时间独立思考,也可以在四人小组内选择其中一个问题合作研究,小组长做好分工。完成任务后,集体汇报,教师根据学生完成的情况进行小结,并给予适当的指导。

3.教学例2。

多媒 图上距离 15cm 实际距离 450km

回家找一找自己或爸爸妈妈今年的全身照片,算一算照片的比例尺。

比例的基本概念的说课稿篇6

⊙问题导入

1.课件出示问题。

南湖小学有一块长方形草坪,长50m,宽30m。把这块草坪按一定的比缩小,画出的平面图长5cm,宽3cm,你能求出这幅图的比例尺吗?(学生自由作答)

2.导入。

1∶1000就是上面这幅图的比例尺。这节课我们就来复习比例尺的知识。

⊙回顾与整理

1.比例尺的计算公式。

图上距离∶实际距离=比例尺或=比例尺。

2.求一幅图的比例尺,通常需要注意什么?

(1)求比例尺时,图上距离与实际距离的单位一定要相同。

(2)为了计算方便,通常把比例尺写成前项或后项是1的比。

3.比例尺的表现形式。

(1)数值比例尺。像1∶1000这样的比例尺叫做数值比例尺。

(2)线段比例尺。在图上用有数量的线段来表示相对应的实际距离(如

)。这种比例尺叫做线段比例尺。

4.线段比例尺与数值比例尺如何相互改写?

例如:

表示图上距离1cm相当于实际距离10m,10m=1000cm,改写成数值比例尺是1∶1000。

5.根据比例尺求图上距离或实际距离。

图上距离=实际距离×比例尺

实际距离=图上距离÷比例尺

⊙典型例题解析

课件出示典型例题。

在比例尺为

的图纸上量得甲、乙两地相距15cm,甲、乙两地实际相距()km。

分析本题考查的是学生对线段比例尺与数值比例尺相互改写的掌握情况。

先把线段比例尺化成数值比例尺,即=,然后根据数值比例尺求出实际距离。

解答方法一因为图上距离÷实际距离=比例尺,所以实际距离=图上距离÷比例尺。

15÷=7500000(cm)=75(km)

方法二因为图上距离1cm表示实际距离5km,所以图上距离15cm表示的实际距离是15个5km。

15×5=75(km)

方法三因为同一幅图的比例尺是固定的,所以可以根据比例尺一定来列比例解答。

解:设甲、乙两地实际相距xcm。

x=7500000

7500000cm=75km

⊙探究活动

1.课件出示探究题。

在比例尺为的图纸上,画一个边长为4cm的正方形草坪,草坪的实际周长是多少?实际面积是多少?

2.小组合作,讨论解法。

3.汇报解题思路和解题过程。

预设

生1:要想求出草坪的实际周长,应先求出草坪的实际边长。

4÷=20000(cm)

20000cm=200m

200×4=800(m)

生2:要想求出草坪的实际面积,可以先求出草坪的图上面积,然后再除以比例尺。

4×4÷=80000(cm2)

80000cm2=8m2

生3:要想求出草坪的实际面积,应先求出草坪的实际边长,再求实际面积。

4÷=20000(cm)20000cm=200m200×200=40000(m2)

4.观察比较。

同样是求草坪的实际面积,得到的结果为什么不同?

成语首拼